研究生: |
曾子政 |
---|---|
論文名稱: |
利用三維頭部資料建立男性國人頭型及臉型分類與應用 Classification and Application of Taiwanese Males’ Head Shapes and Face Shapes by Using 3-D Head Scanning Data |
指導教授: | 王茂駿 |
口試委員: |
王茂駿
林志隆 唐硯漁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 三維頭型掃描 、資料挖礦 、群集分析 、頭型分類 、臉型分類 、分類尺碼 、縮放 |
外文關鍵詞: | 3D head scanning, data mining, data mining, cluster analysis, head shape classification, face shape classification, sizing system, deformation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三維頭型掃描方法重新建立符合現代台灣人頭部資訊資料庫,共蒐集300位18~30歲之男性國人頭部資訊,進行三維頭型掃描儀的精確度(precision)與準確度(accuracy)驗證,以確保數據的真實性;並將所蒐集到的頭部資訊分別進行頭型與臉型兩部份的分析與探討。
根據三維頭型掃描儀掃描頭部資訊可進而計算出63項頭部相關尺寸。頭型部份利用主成分分析找出「頭長」、「頭高」與「頭寬」三項主要影響頭型之重要尺寸參數,並利用資料挖礦中之群集分析法,將國人頭型分為「短淺寬型」、「短淺窄型」、「長深寬型」和「長深窄型」四種代表類型。頭型分類尺碼部分,考量實務運用與相關研究之做法,分別建立四種頭型分類尺碼,涵蓋率皆達93%以上。在實務應用方面,套用一套合邏輯的縮放機制,針對頭型資料進行重複驗證,頭型縮放之平均誤差值為10.20 mm,並利用電腦輔助設計軟體,將縮放機制實際應用於本研究所提出之分群後代表頭型,以期達到具有快速且具高解釋程度之效,以應用在頭部相關產品設計之參考。
臉型部份利用主成分分析找出「臉長(型態面)」、「臉寬(顴骨間距)」與「鼻樑點至右耳珠水平深度」三項主要影響臉型之重要尺寸參數,並利用資料挖礦中之群集分析法,將國人臉型分為「長淺窄型」、「短淺窄型」、「長深寬型」和「短深寬型」四種代表類型。臉型分類尺碼部分,考量實務運用與相關研究之做法,分別建立兩種頭型分類尺碼,涵蓋率皆達92%以上。在實務應用方面,套用一套合邏輯的縮放機制,針對臉型資料進行重複驗證,臉型縮放之平均誤差值為7.49 mm,並利用電腦輔助設計軟體,將縮放機制實際應用於本研究所提出之分群後代表臉型,以期達到具有快速且具高解釋程度之效,以應用在臉部相關產品設計之參考。
This study used 3D scanning method to collect head and face anthropometric data of 300 Taiwanese males aged 18~30 years. In addition to the analysis of head shapes and face shapes, the precision and accuracy of the 3D head scanner were also evaluated in this study.
Principal component analysis of head shapes was applied to obtain the important dimensions, including head length, total head height and head breadth. Clustering analysis was performed to identify four head shapes including: short-shallow-wide, short-shallow-narrow, long-deep-wide and long-deep-narrow. In addition, we established four head shape sizing systems with coverage over 93%. Moreover, this study used a reasonable deformation logic to rapidly change head shapes with at mean error 10.20 mm. This result can provide important reference for designing and manufacturing head products.
Next, principal component analysis of face shapes was applied to obtain the important dimensions, including face length (morphologic face height), face breadth (bizygomatic breadth) and sellion to right tragion depth. Clustering analysis was performed to identify four face shapes including: long-shallow-narrow, short-shallow-narrow, long-deep-wide and short-deep-wide. In addition, we established two face shape sizing systems with coverage over 92%. Moreover, this study used a reasonable deformation logic to rapidly change face shapes with mean error around 7.49 mm. This results can provide useful information for designing and manufacturing face products.
1. 中國國家統計局 網站 http://www.stats.gov.cn
2. 王茂駿,王明揚,林昱呈,2002,台灣地區人體計測資料庫手冊,中華民國人因工程協會。
3. 何青鄅,2006,影響消費者選購名牌服飾之因素分析,中華大學應用數學系碩士論文。
4. 李建璁,林彥輝,楊宜學,陳志勇,2006,應用國人頭型資料庫探討安全帽尺寸分類,勞工安全衛生研究季刊,民國95年,第14卷第1期,第48-57頁。
5. 林清山,1990,多變量統計分析法,台北:東華書局。
6. 許馨文,2012,以三維足型資料建置客製化鞋楦,國立清華大學工業工程與工程管理研究所碩士論文。
7. 莊明興,2006,國產戰機座艙人因工程設計與研究-手動俯仰跨越電門操作性精進研究,逢甲大學工業工程與系統管理研究所碩士論文。
8. 麥麗敏等人,2011,解剖生理學,華杏出版股份有限公司。
9. 游志雲、葉文裕、楊宜學、張碧慧,1996,勞工頭型模式之研究:台灣勞工頭型資料庫與標準頭型之建立,勞工安全衛生研究季刊,民國85年6月,第4卷第2期,第31-46頁。
10. Anderberg, M. R. (1973). Cluster Analysis for Applications. New York: Academic Press.
11. Badawi-Fayad, J. and Cabanis, E. (2007). Three-dimensional Procrustes analysis of modern human craniofacial form. The Anatomical Record, Vol. 290, pp. 268-276.
12. Bailar III, J. C., Meyer, E. A. and Pool, R. (2007). Assessment of the NIOSH Head-and-Face Anthropometric Survey of U.S. Respirator Users. Washinton, D. C., The National Academies Press.
13. Ball, R. (2009, a). Size China - A 3D anthropometric survey of the Chinese head.
14. Ball, R. (2009, b). 3-D Design Tools from the SizeChina Project. The Quarterly of Human Factors Applications. Vol. 17, No. 3, pp. 8-13.
15. Ball, R. and Molenbroek, J.F.M. (2008). Measuring Chinese Heads and Faces. Proc of the 9th International Congress of Physiological Anthropology, Human diversity: Design for life. Delft, the Netherlands, pp. 150-155.
16. Berry, M. J. A. and Linoff, S. G. (1997). Data Mining Techniques: for Marketing, Sales, and Customer Support. NY: John Wiley & Sons Inc.
17. Bookstein, F.L. (1991). Morphometric Tools for Landmark Data. Cambridge Univ. Press, Cambridge.
18. Brazile, W. J., Buchan, R. M., Sandfort, D. R., Melvin, W., Johnson, J. A. and Charney, M. (1998). Respirator fit and facial dimensions of two minority groups. Applied Occupational and Environmental Hygiene, Vol. 13, No. 4, pp. 233-237.
19. Cadex Inc. 網站 http://www.cadexinc.com
20. Chamberland, A., Carrier, R., Forest, F., & Hachez, G. (1998). Anthropometric survey of the Land Forces (LF97) (Contractor report No. 98-CR-15). Toronto, Ontario: Defence and Civil Institute of Environmental Medicine.
21. Chen, W., Zhuang, Z., Benson, S., et al. (2009). New Respirator Fit Test Panels Representing the Current Chinese Civilian Workers. The Annals of Occupational Hygiene, Vol. 53, No. 3, pp. 297-305.
22. China National Institute of Standardization. (1981). CNIS GB2428–81. Head styles of adults by Beijing Institute of Labor Protection. Beijing, China: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.
23. CNS 2396-Z2009. (2007). 騎乘機車用防護頭盔。
24. D’Apuzzo, N. (2006). Overview of 3D Surface Digitization Technologies in Europe. Proc. SPIE, Vol. 6056, pp.42-54.
25. Du, L., Zhuang, Z., Guan, H., et al. (2008). Head-and-Face Anthropometric Survey of Chinese Workers. The Annals of Occupational Hygiene, Vol. 52, No. 8, pp. 773-782.
26. EN 960. (1995). Headforms for use in the testing of protective helmets. European Standard.
27. Farkas, L. G. (1994). Anthropometry of the Head and Face. 2nd ed., NY, USA: Raven Press.
28. Gray, H. (1977). Anatomy, Descriptive and Surgical, Classic collector’s ed., New York: Gramercy Books.
29. I-Ware Laboratory Co., Ltd. (2011). Measurement point and items. Osaka, Japan.
30. ISO International Organization for Standardization. (1970). ISO/R 1511-1970 (E), Protective helmets for road users. 1stedition, Switzerland.
31. ISO International Organization for Standardization. (2005). 3D Scanning Methodologies for Internationally Compatible Anthropometric Databases. ISO 20685.
32. JIS Japan Industrial Standards. (2007). JIS T8133, Protective helmets for vehicular users. Tokyo, Japan.
33. Joshi, V. V., Swamy, S. G., and Biswal, P. (2009). Sizing trials of a prototype aircrew helmet: Lessons re-learnt. Indian Journal of Aerospace Medicine, Vol. 53, No. 2.
34. Kaiser, H.F. (1960).The application of electronic computers to factor analysis. Educational & Psychological Measurement, Vol. 20, pp. 141-151.
35. Kim, H., Han, D. H., Roh, Y. M., Kim, K. and Park, Y. G. (2003). Facial anthropometric dimensions of Koreans and their associations with fit of quarter-mask respirators. Industrial Health Vol. 41(1), pp. 8-18.
36. Lu, J. M. and Wang, M. J. (2010). The Evaluation of Scan-Derived Anthropometric Measurements. IEEE Transactions On Instrumentation and Measurement, Vol. 59, No. 8.
37. Luximon, Y., Ball, R. and Justice, L. (2010). The Chinese Face: A 3D Anthropometric Analysis. Proceedings of the TMCE.
38. Meunier, P. (2010). A sizing strategy for the Advanced Modular Multi-threat Protective Headwear System. Technical Memorandum, Toronto, Defence Research and Development Canada.
39. Meunier, P., Tack, D., Ricci, A., Bossi, L. and Angel, H. (2000). Helmet accommodation analysis using 3D laser scanning. Applied Ergonomics, Vol. 31 (4), pp. 361-369.
40. Mutsvangwa, T. and Douglas, T.S. (2007). Morphometric analysis of facial landmark data to characterize the facial phenotype associated with fetal alcohol syndrome. Journal of Anatomy, Vol. 210(2), pp. 209-220.
41. Nunnally, J.C. and Bernstein, I.H. (1994). Psychometric theory. New York: McGraw-Hill.
42. Oestenstad, R. K. and Perkins, L. L. (1992). An assessment of critical anthropometric dimensions for predicting the fit of a half-mask respirator. American Industrial Hygiene Association Journal, Vol. 53(10), pp. 639-644.
43. Robinette, K., Daanen, H. and Paquet, E. (1999). The CAESAR project: A 3-D surface anthropometry survey. Proceedings of 2nd International Conference on 3D Digital Imaging and Modeling (3DIM’99), pp. 380-386.
44. She, Q. Y. (2002). Practice book of knowledge and standard of individual protect equipment. Hubei Press of Science and Technology, Vol. 14-6.
45. Siebert, J. P. and Marshall, S. J. (2000). Human body 3D imaging by speckle texture projection photogrammetry. Sensor Review, Vol. 20, No. 3.
46. Spies, A., Wilson, K. S., and Ferrie, R. (2011). Respirator fit of a medium mask on a group of South Africans: a cross-sectional study. Journal of Environmental Health, Vol.10, No. 17.
47. Yang, L. and Shen, H. (2008). A pilot study on facial anthropometric dimensions of the Chinese population for half-mask respirator design and sizing. International Journal of Industrial Ergonomics, Vol. 38, pp. 921-926.
48. Yang, L., Shen, H. G. and Wu, G. (2007). Racial Differences in Respirator Fit Testing: A Pilot Study of Whether American Fit Panels are Representative of Chinese Faces. The Annals of Occupational Hygiene, Vol. 51, No. 4, pp. 415-421.
49. Yang, Y. H. and Yu, C. Y. (2002). A 3-D Craniofacial Anthropometric Database – with an Application for Design of Full-Face Respiratory Masks. Asian Journal of Ergonomics, Vol. 3, No. 2, pp. 83-104.
50. Zhuang, Z. and Bradtmiller, B. (2005). Head and face anthropometric survey of U.S. respirator users. Journal of Occupational and Environmental Hygiene, Vol. 2, pp. 567-576.
51. Zhuang, Z., Bradtmiller, B., Shaffer, R. (2007). New respirator fit test panels representing the current U.S. civilian work force. Journal of Occupational and Environmental Hygiene, Vol. 9, pp. 647-659.