研究生: |
黎冠宏 Li, Kuan-Hung |
---|---|
論文名稱: |
超薄玻璃基板之彎曲強度與彎曲疲勞壽命研究 On the Study of Flexural Strength and Bending Fatigue Life of Ultra-thin Glass Substrate |
指導教授: |
陳文華
Chen, Wen-Hwa 鄭仙志 Cheng, Hsien-Chie |
口試委員: |
劉德騏
Liu, De-Shin 石正宜 Shih, Cheng-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 超薄玻璃 、彎曲強度 、疲勞壽命 、應力-壽命曲線 |
外文關鍵詞: | Ultra-thin glass, Flexural strength, Fatigue life, S-N curve |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著電子產品追求輕薄、可撓曲之趨勢下,玻璃基板亦朝向薄型化、可撓曲方向發展。相較於其他可撓性基板材料,超薄玻璃基板具有優異的化學穩定性、氣密性、抗濕性、高透光率、高彎曲性及低表面粗糙度等優點,而使其將成為可撓式基板理想之替代品,且隨著印刷電子技術的大幅進展,若能再搭配卷對卷凹版轉印製程,將有助於大量生產,降低製造成本。超薄玻璃雖具可撓性但仍因具有玻璃之硬脆特性,其彎曲強度及彎曲疲勞壽命仍須予以深入探討,亦為本論文之主要目標。
首先,本論文將厚度為50μm及100μm之超薄玻璃基板分別經由機械切割、皮秒雷射切割及化學濕蝕刻三種切割製程裁切後,透過兩點/三點彎曲實驗量測及彎曲強度公式計算出不同切割製程下之極限彎曲強度,並對各切割製程與不同厚度超薄玻璃基板之極限彎曲強度進行比較,以找出最適合超薄玻璃基板之厚度及切割製程。
接著,為了提升超薄玻璃基板之彎曲強度,本論文亦透過光學顯微鏡及場發射掃瞄式電子顯微鏡對玻璃切割邊緣及斷面進行觀察分析,以探討影響極限彎曲強度之原因,並應用工研院之雷射劈裂修補技術來消除超薄玻璃基板邊緣上之缺陷。
最後,本論文將印有金屬電極之超薄玻璃基板進行切割,並以自製的兩點彎曲測試平台進行疲勞實驗,探討於不同的曲率半徑、溫度、頻率下之疲勞壽命與破壞機制,另藉由有限單元分析軟體ANSYS®進行超薄玻璃基板試片之彎曲應力分析,並配合兩點彎曲疲勞測試平台之疲勞實驗結果,建構出其S-N曲線。
本論文之研究成果除有助於掌握不同厚度之超薄玻璃基板於不同切割製程下之極限彎曲強度外,並可提供相關研究人員於設計可撓性產品及評估其彎曲壽命時之參考。
In recent years, consumers’ eager demand of flexible products with great lightweight, miniaturization and flexible feature has nowadays driven the characteristic of ultra-thin glass substrate toward high thinning and flexibility. Ultra-thin glass holds many advantages over other flexible substrate materials for flexible electronics or printed electronics, including excellent chemical stability, hermeticity, moisture resistance, high optical transmission, low surface roughness and long-term stability. It has increasingly become a ideal substitute of substrate material in various microelectronics applications. With the advances in printed electronics technology, if ultra-thin glass can apply in roll-to-roll gravure offset printing process, which will useful in continuous mass production and reduce the manufacturing costs. Despite of the great flexibility capacity of ultra-thin glass, glass itself is generally a brittle and fragile material. Thus, to explore its ultimate flexural strength and flexural fatigue life is essential, they also are the main target in this thesis.
Firstly, the ultra-thin glass substrate with thicknesses of 50μm and 100μm are cut by three kinds of cutting processes, namely mechanical dicing, pico-second laser dicing and wet etching. To measure and caculate the ultimate flexural strength of an ultra-thin glass substrate under different cutting processes by two-point / three-point bending test and bending strength formula. Compare the ultimate bending strength of ultra-thin glass substrate with different thickness between each cutting process to find the suitable thickness and cutting process for ultra-thin glass substrate.
Then, in order to improve the bending strength of the ultra-thin glass substrate, the quality of the cutting edges and cross-sections of the glass cutting are observed and analyzed by optical microscope and field emission scanning electron microscope to investigate the reasons for impact of the ultimate bending strength. And the laser peeling proposed by Industry Technology Research Institute, Taiwan, is further applied for eliminating micro edge cracks/flaws of the ultra-thin glass substrate.
Finally, this thesis cut the ultra-thin glass substrate which is printed with metal electrode and using a self-designed two-point tester for fatigue experiments, to explore the effects of different radius of curvature, temperature and frequency on fatigue life and its damage mechanism. The finite element analysis software ANSYS is used to bending stress analysis of ultra-thin glass specimens. The S-N curve is constructed by the fatigue test results of the self-designed two-point tester and the results of the finite element analysis
The results of this paper will help to understand the ultimate bending strength of ultra-thin glass substrate under different cutting processes with different thicknesses and provide the reference for the flexible products design when evaluate its bending life.
[1] Allaire, R. A. and Lapp, J. C. (2004): Scoring of AMLCD Glass. Corning Technical Information Paper, TIP 302, pp.1-2.
[2] Alzoubi, K.; Lu, S. and Sammakia, B. (2011a): Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Applications. IEEE Trans. Components Package, Vol. 1, No. 1, pp. 43-51.
[3] Alzoubi, K.; Hamasha, M. M.; Schadt, M.; Lu, S.; Sammakia, B. and Poliks, M. (2011b): Effect of lamination on the bending fatigue life of copper coated PET substrate. Proceeding of Society of Photographic Instrumentation Engineers (SPIE), San Francisco, California, USA, Jan. 21-27, pp. 1-9.
[4] Alzoubi, K.; Hamasha, M. M.; Lu, S. and Sammakia, B. S. (2011c): Bending Fatigue Study of Sputtered ITO on Flexible Substrate. Journal of Display Technology, Vol.7, No. 11, pp. 593-600.
[5] Chen, J. and Wu, Z. (2013): Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect. Proceedings of SPIE, Vol. 8786, pp. 87860E.
[6] Chen, K. S.; Yang, T. S.; Hong, R. C.; Chiu, T. C.; Wen, A. C.; Li, C. H.; Huang, C. J.; Chen, K. T. and Lin, M. C. (2016): Thermo-mechanical analysis of laser peeling of ultrathin glass for removing edge flaws in web processing applications. In: Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2016 Symposium on, IEEE, pp. 1-6.
[7] Chen, Q.; Xu, L.; Jing, C.; Xue, T. and Salo, A. (2008): Flexible Device and Component Reliability Study Using Simulations. International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, Freiburg-im-Breisgau, Germany, Apr. 20-23, pp. 303-307.
[8] Crawford, G. P. (2005): Flexible Flat Panel Displays. John Wiley & Sons, Ltd.
[9] Draper, N. R. and Smith, H. (1981): Applied Regression Analysis, John Wiley & Sons.
[10] Garner, S.; Glaesemann, S. and Li, X. (2014): Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Applied Physics A: Materials Science & Processing, Vol. 116, No. 2, pp. 403-407.
[11] Griffith, A. A. (1921): The Phenomena of Rupture and Flow in Solid. Philosophical Transactions of the Royal Society of London, Series A, containing papers of a mathematical or physical character 221, pp. 163-198.
[12] Grego, S.; Lewis, J.; Vick, E. and Temple, D. (2005): Development and Evaluation of Bend-testing Techniques for flexible-Display Applications. Journal of the Society for Information Display, Vol. 13, No. 7, pp. 575-581.
[13] Gulati, S. T.; Westbrook, J.; Carley, S.; Vepakomma, H. and Ono, T. (2011): Two Point Bending of Thin Glass Substrate. SID Symposium Digest of Technical Papers, Vol. 42, No. 1, pp. 652-654.
[14] Hrehorova, E.; Rebros, M.; Pekarovicova, A.; Bazuin, B. and Ranganathan, A. (2011): Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics. Journal of Display Technology, Vol. 7, No. 6, pp.318-324.
[15] Huang, C. S.; Lin, H. T.; Huang, G. S.; Hu, J. P.; Lu, S. T. and Liu, C. T. (2013): Roll-to-roll Process on Ultra-thin Flexible Glass for Manufacturing the Multi-Touch Sensor Panel. Journal of the Society for Information Display, Vol. 44, No. 1, pp. 807-809.
[16] Lee, S. K. and Lee, J. U. (2003): The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates. Transactions on electrical and electronic materials, Vol. 4, No. 6, pp. 5-8.
[17] Leterrier, Y.; Fischer, C.; Médico, L.; Demarco, F.; Månson, J. A. E.; Bouten, P.; DeGoede, J. and Nairn, J. A. (2003): Mechanical Properties of Transparent Functional Thin Films for Flexible Displays. Society of Vacuum Coaters 46th Annual Technical Conference Proceedings, San Francisco, California USA, May 3-8, pp. 169-174.
[18] Li, T. C.; Han, C. F.; Chen, K. T. and Lin, J. F. (2013): Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests. Journal of Display Technology, Vol. 9, No. 7, pp. 577-585.
[19] Li, X. and Garner, S. (2014): Laser cutting of flexible glass. Symposium on Laser Processing for consumer Electronics II, CLEO: Applications and Technology, San Jose, U.S.A., pp. ATu3L-1.
[20] Liu, X.; Liu, Z.; Bao, Y.; Sun, Y.; Wan, D. and Li, K. (2016): Thickness effect of glass bending strength and test technology for bending strength of ultrathin glass. Journal of Chinese Ceramic Society, Vol. 44, No. 11, pp. 1641-1645.
[21] Lumley, R. M. (1969): Controlled separation of brittle materials using a laser. American Ceramic Society Bulletin, Vol. 48, pp. 850-854.
[22] Matthewson, M. J.; Kurkjian, C. R. and Gulati, S. T. (1986): Strength Measurement of Optical Fibers by Bending. Journal of the American Ceramic Society, Vol. 69, No. 11, pp. 815-821.
[23] Nippon Electric Glass, At the Forefront of Glass Technology: http://www.neg.co.jp/glass_en/03.html
[24] Nippon Electric Glass Co., Ltd., Product Guide for Information Display, 2012.
[25] Oh, J. S.; Cho, Y. R.; Cheon, K. E.; Karim, Md. A. and Jung, S. J. (2007): Failure Mechanism of Patterned ITO Electrodes on Flexible Substrate under Static and Dynamic Mechanical Stresses. Solid State Phenomena, Vol. 124-126, pp. 411-414.
[26] Ono, T. and Allaire, R. A. (2000): Fracture Analysis, a Basic Tool to Solve Breakage Issues. Taiwan FPD Expo 2000, pp. 2-8.
[27] Plichta, A.; Weber, A. and Habeck, A. (2003): Ultra thin flexible glass substrates. Materials Research Society Online Proceedings Library Archive, Vol. 769, pp. 1-10.
[28] Shen, Y. H.; Cheng, H. C.; Chen, Y. W.; Lu, S. T.; Lin, S. M. and Chen, W. H. (2017): Temperature effects on ink transfer performance of gravure offset printing for fine-line circuitry. In Electronics Packaging (ICEP), 2017 International Conference on, IEEE, pp. 475-478.
[29] Tsai, C. H. and Liou, C. S. (2003): Fracture mechanism of laser cutting with controlled fracture. ASME Journal of Manufacturing Science and Engineering, Vol. 125, pp. 519-528.
[30] Wang, L. and Chen, X. W. (2011): Calculation and Program Processing of Doubtful Values in Material Fatigue Test Data. Physical Testing and Chemical Analysis (Part A: Physical Testing), Vol. 47, No. 5, pp. 295-297.
[31] Weisstein, E. W. (1999): Radius of Curvature. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/RadiusofCurvature. html
[32] Wöhler, A. (1870): Über die Festigkeits-versuche mit Eisen und Stahl. Zeitschrift Bauwesen, Vol. 20, pp. 73–106.
[33] Zheng, H. Y. and Lee, T. (2005): Studies of CO2 Laser Peeling of Glass Substrates, IOP Journal of Micromechanics and Microengineering. Vol. 15, pp. 2093-2097.
[34] 吳崇銘、王凱駿、王裕銘 (2012):精密凹版轉印技術與應用,機械工業雜誌,第354期,第58-66頁
[35] 陳坤坐、古淳仁、李閔凱、邱慶龍 (2014):次世代玻璃基板切割與邊緣加工,工研院南分院積層製造與雷射應用中心,雷射光谷推動促進網,第1-3頁
[36] 工業技術研究院,創新應用-雷射無痕玻璃削整技術,https://www.youtube.com/watch?v=QbX5_stCBTk