研究生: |
曾育心 Tseng, Yu-Shin |
---|---|
論文名稱: |
A study on Korenblum conjecture for polynomials of two terms 柯倫布猜想在低項數多項式的一些研究 |
指導教授: |
程守慶
Chen, So-Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 柯倫布 |
外文關鍵詞: | Korenblum |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
In 1993, Korenblum, B., O'neil, R., Richards, K., and Zhu, K. [5]
proved a special case of the maximum principle for the Bergman space
conjectured by B. Korenblum [4]: There exists a constant c 2 (0; 1) such
that if f and g are holomorphic functions on the open unit disk D with
jf(z)j jg(z)j on c < jzj < 1 then kfk2 kgk2; where k k2 is the L2 norm
with respect to area measure on D. They proved the above conjecture when
f or g is a monomial. Therefore, we study the conjecture when f and g are
polynomials of one term or two terms, and we will nd the best value for
these special cases.
1
References
[1] Hayman, W.K., On a conjecture of Korenblum, Analysis, 19(1999), 195-
205.
[2] Hinkkanen, A., On a maximum principle in Bergman space, Journal
D'Analysis Mathematique, 79(1999),335-344.
[3] Korenblum, B., Transformation of zero sets by contractive operators
in the Bergman space, Bulletin des Sciences Mathematiques, 2e serie,
114(1990), 385-394.
[4] Korenblum, B., A maximum principle for the Bergman space, Publ.
Math., 35(1991), 479-486.
[5] Korenblum, B., O'neil, R., Richards, K., and Zhu, K., Totally monotone
functions with applications to the Bergman space, Trans. Amer. Math.
Soc., 307(1993), 795-806.
[6] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.
[7] C.Wang, Rening the constant in a maximum principle for the Bergman
space, Proc. Amer. Math. Soc. 132(2004), 853-855.
[8] C. Wang, On Korenblum's constant, J. Math. Anal. Appl. 296(2004),
262-264.
[9] C. Wang, Domanation in the Bergman space and Korenblum's constant.
Integr. equ. oper. theory 61(2008), 423-432.
[10] C. Wang, On Korenblum maximum principle, Proc. Amer. Math. Soc.
134(2006), 2061-2066.