簡易檢索 / 詳目顯示

研究生: 曾育心
Tseng, Yu-Shin
論文名稱: A study on Korenblum conjecture for polynomials of two terms
柯倫布猜想在低項數多項式的一些研究
指導教授: 程守慶
Chen, So-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 19
中文關鍵詞: 柯倫布
外文關鍵詞: Korenblum
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    In 1993, Korenblum, B., O'neil, R., Richards, K., and Zhu, K. [5]
    proved a special case of the maximum principle for the Bergman space
    conjectured by B. Korenblum [4]: There exists a constant c 2 (0; 1) such
    that if f and g are holomorphic functions on the open unit disk D with
    jf(z)j  jg(z)j on c < jzj < 1 then kfk2  kgk2; where k k2 is the L2 norm
    with respect to area measure on D. They proved the above conjecture when
    f or g is a monomial. Therefore, we study the conjecture when f and g are
    polynomials of one term or two terms, and we will nd the best value for
    these special cases.
    1


    Contents 1 Introduction 3 2 Preliminaries 4 3 Main Results 6 4 The optimal constant c for some theorems. 16

    References
    [1] Hayman, W.K., On a conjecture of Korenblum, Analysis, 19(1999), 195-
    205.
    [2] Hinkkanen, A., On a maximum principle in Bergman space, Journal
    D'Analysis Mathematique, 79(1999),335-344.
    [3] Korenblum, B., Transformation of zero sets by contractive operators
    in the Bergman space, Bulletin des Sciences Mathematiques, 2e serie,
    114(1990), 385-394.
    [4] Korenblum, B., A maximum principle for the Bergman space, Publ.
    Math., 35(1991), 479-486.
    [5] Korenblum, B., O'neil, R., Richards, K., and Zhu, K., Totally monotone
    functions with applications to the Bergman space, Trans. Amer. Math.
    Soc., 307(1993), 795-806.
    [6] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.
    [7] C.Wang, Re ning the constant in a maximum principle for the Bergman
    space, Proc. Amer. Math. Soc. 132(2004), 853-855.
    [8] C. Wang, On Korenblum's constant, J. Math. Anal. Appl. 296(2004),
    262-264.
    [9] C. Wang, Domanation in the Bergman space and Korenblum's constant.
    Integr. equ. oper. theory 61(2008), 423-432.
    [10] C. Wang, On Korenblum maximum principle, Proc. Amer. Math. Soc.
    134(2006), 2061-2066.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE