研究生: |
郭仁杰 |
---|---|
論文名稱: |
奈米磁球的合成暨修飾應用於蛋白質與自組裝分子間接合效率之提升 Synthesis and Modification of Fe3O4 Nanoparticles for Binding Efficiency Between Iron Oxide -Protein Conjugation and Self-Assembly Molecules |
指導教授: |
曾繁根
Fan-Gang Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 奈米磁球 、奈米氧化鐵 、自組裝分子 、官能基修飾 |
外文關鍵詞: | Iron Oxide, Fe3O4, APTS, Protein, functional group |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在化學反應中,反應物的濃度與反應物的碰撞頻率的提升,可以使化學反應的速率增加。我們想利用修飾有PEG分子的奈米氧化鐵粒子攜帶螢光抗體,在溶液中藉由從上下通入交流磁場的擾動,集中抗體的濃度與增加抗體與自組裝分子(SAM)的碰撞頻率來提升之間的接合效率。以此結果為基礎,進而,我們可以推衍至抗體與抗原間的接合效率提升。
首先,在本文中,我們先完成了奈米氧化鐵的有機相合成,達到控制尺寸大小與均勻度的目的。再藉由PEG分子的修飾,使奈米磁球能與水相中分散且帶有COOH官能基。帶有COOH官能基的奈米磁球在經過EDC與NHS活化後,可與螢光抗體做接合。再透過分光光度計的測量來做抗體濃度的定量。
我們利用此一工具來進行抗體與自組裝分子的接合效率提升測試,找尋交流磁場的最佳擾動頻率。在目前最佳參數下,達到提升抗體與自組裝分子的接合效率374%的結果。
In this research we propose the utilization of iron oxide nanoparticles for the enhancement of protein binding efficiency to SAMs functionalized surface. Very uniform iron oxide nanoparticles with 5 and 10 nm particle sizes have been successfully fabricated by using micelle method in solvent phase, and the surfaces were modified by PEG-COOH functional group for dispersion in water and conjugation with protein. Anti-rabbit IgG-cy3 was successfully conjugated on the nanoparticle surfaces after the activation of PEG-COOH group. Binding efficiency between iron oxide-protein conjugation and self-assembly molecules (SAM) by external magnetic field with different AC frequencies was tested and demonstrated a 374% enhancement.
1.Ajay K.G,Mona G. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications Biomaterials 26 (2005) 3995–4021
2.Elements of Chemical Reaction Engineering, H.Sctt Fogler
Third Edition
3.金屬奈米粒子的製造,郭清癸, 黃俊傑, 牟中原* 國立台灣大學化學系及凝態中心 http://psroc.phys.ntu.edu.tw/bimonth /v23/614.doc
4.李家瑋,γ-Fe2O3 奈米粒子的表面修飾與及其生化上的應用,化學研究所.2004,國立成功大學.
5.劉玉山,神奇的生物磁鐵。http://www.ck.tp.edu.tw/~bio/ pdf/01030003.pdf
6.Schuler D. Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol. 2004 Jan; 181(1):1-7. Epub 2003 Dec 11.
7.Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particle formation. Trends Microbiol. 2003 Nov; 11(11):536-41.
8.Samuel Z. Functionalized Poly(ethy1ene glycol) for Prepa -ration of Biologically Relevant Conjugates Bioconjugafe Chem. 1995, 6, 150-165
9. 蕭正昌,應用於腫瘤熱療之奈米磁粒加熱系統研製,2006 國立成功大學。
10. Seyda B,Deverraux A. J, Protein Separations Using Colloidal Magnetic Nanoparticles Biotechnol. Prog. 2003, 19, 477-484
11. Carmen B,Oscar B.M, Surface characterisation of dextran -coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation Journal of Magnetism and Magnetic Materials 293 (2005) 20–27
12. Akira I, Masashige S, Medical Application of Functionalized Magnetic Nanoparticles JOURNAL OF BIOSCIENCE AND BIOENGIN -EERING 2005, Vol. 100, No. 1, 1–11. 2005 DOI: 10.1263 /jbb.100.1
13. Martins.V,Fonseca .L.P, Use of Magnetoresistive Biochips for Monitoring of Pathogenic Microorganisms in Water through Bioprobes:Ologonucleotides and Antibodies.NSTI-Nanotech 2005,www.nsti.org,ISBN 0-9767985-0-6 Vol.1,2005.
14. Guanxiong L, Shouheng S, Spin valve sensors for ultra -sensitive detection of superparamagnetic nanoparticles for biological applications Sensors and Actuators A 126 (2006) 98–106
15. D.K. Kim、Y. Zhang.Synthesis and characterization of surfac tantcoatedsuperp aramagnetic monodispersed iron oxide nanop articles 2001
16. Deepa Thapa,V.R. Palkar. Properties of magnetite nanoparticles synthesized through a novel chemical route .Materials Letters 58 (2004) 2692– 2694
17. Shouheng S, Hao Z. Monodisperse MFe2O4 (M ) Fe, Co, Mn) Nanoparticles. J. AM.CHEM.SOC.2004,126,273-279
18. Tianzhong Y, Chengmin S, Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties J.Phys.Chem.B 2005,109,23233-23236
19. Shouheng S and Hao Z, Size-Controlled Synthesis of Magnetite Nanoparticles J.AM.CHEM.SOC.9 VOL.124,NO.28,2002 8205
20. Hamley IW. Nanotechnology with soft materials. Angew Chem IntEd 2003;42:1692–712.
21. Tepper T, Ilievski F, Ross CA, Zaman TR, Ram RJ, Sung SY,Stadler BJH. Magneto-optical properties of iron oxide films. J Appl Phys 2003;93(10):6948–50.
22. Lifen S,Paul E. Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces Received June 26, 1998.
23.Kerstin W, Armin K. Synthesis of oligonucleo ti defun ctionalized magnetic nanoparticles and study on their in vitro cell uptake Received 28 August 2003; Accepted 2 February 2004
24. Havva Y.C,Rachel.S . Superparamagnetic nanoparticles stabilized bypoly merized PEGylated coatings Available online 2 March 2005
25. Feixiong H, Koon G. N, Cellular Response to Magnetic
Nanoparticles “PEGylated”via Surface-Initiated Atom
Transfer Radical Polymerization Biomacromolecules 2006
26. Jun Wang, Prepare highly crystalline NiFe2O4 nanoparticles
with improved magnetic properties Materials Science and
Engineering B 127 (2006) 81–84
27. Stephanie G. G, Hao Zeng,Bio-functionalization of Monodisperse Magnetic Nanoparticles and Their Use as Bio -molecular Labels in a Magnetic Tunnel Junction Based Sensor
J. Phys. Chem. B 2005, 109, 13030-13035
28. Leila N, Franz B, Poly(lactic acid) nanoparticles labeled with biologically active Neutravidine for active targeting European Journal of Pharmaceutics and Biopharmaceutics 58 (2004) 483–490
29. Parviz A, Xiaoxiao H, An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles P. Ashtari et al.Talanta 67 (2005) 548–554
30. 林俊逸,國立清華大學工程與系統科學系,氧化鐵奈米粒子表面修飾之研究與應用.
31.謝馨儀,清華大學工程與系統科學系,氣相式奈米自組裝單分子
膜應用於生醫晶片表面之生醫分子鍵結阻絕。