簡易檢索 / 詳目顯示

研究生: 葉家瑋
Chia-Wei Yeh
論文名稱: 建立紅外光分析系統以探討真空中水氣的現象
Developing infrared analysis for the investigation of the behavior of water in vacuum
指導教授: 吳見明
Chien-Ming Wu
陳俊榮
June-Rong Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 傅立葉轉換麥克森干涉儀光彈偏振調制儀偏振調制吸收光譜紅外光
外文關鍵詞: Fourier transform, Michelson interferometer, PEM, PM-IRRAS, IR
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有不少研究致力於絕熱膨脹效應對水氣吸附現象的探討,但由於受限於分析儀器之限制,大部份之方法皆無法從一大氣壓時便開始分析訊號。然而,此段時間可能是造成表面水氣附著的重要階段,因此本實驗的主要目的是建立一套新的實驗方法以有效的將分析條件逼近一大氣壓,以觀察表面水氣吸附現象。
    本實驗的重點是設計並建立一套紅外光分析系統以探討真空腔中的水氣吸附現象,本實驗另包含:(一)利用傅立葉分光術擷取紅外光的光譜訊號(二)氣體淨化系統對移除系統內的水氣與二氧化碳的研究及(三)建立電場偏振調制方法以抑制光路上的氣體吸收干擾。實驗系統光路經測試、微調後可取得理想的紅外光之干涉訊號。而氣體淨化系統在改善系統的密合度之後,可抑制外部的氣體滲入並有效的移除系統內的水氣與二氧化碳,且於此氣體流動下,麥克森干涉光路之移動鏡仍可維持其穩定性。在水氣混合N2及He氣體之測試實驗中,發現於抽氣時,因絕熱膨脹效應導致最低溫度分別下降至-47.6 oC(N2)與-68.1 oC(He)。而於抽氣後4.7秒內,混合氮氣時之水氣吸收率比混合氦氣之情況下還高約0.005 arbitrary units∼0.01 arbitrary units。另外,在偏振調制測試實驗中發現,當雙通道干涉譜之振幅比值小於1.26時,可濾除光路上的氣體吸收干擾,顯示本實驗建立之紅外光系統及電場偏振調制方法可觀察到樣品表面之吸附訊號,而增進對真空腔中水氣之吸附了解。
    目前僅將偏振調制方法應用於量測標準樣品片(poly-l-lysine film on a gold-coated substrate),未來仍需量測真空材料表面的吸收光譜,並將光譜訊號轉換為表面覆蓋度單位,以探討絕熱膨脹效應造成水氣吸附的現象。


    Adiabatic expansion has the effect of causing adsorption of water on surfaces, but present analytical instruments do not allow implementation of an analysis beginning with pumping from atmospheric pressure, which is an important range in relation to the adsorption of water vapor on a sample surface. The purpose of this work is to establish a new experimental method to investigate the phenomenon of adsorption of water on a surface at pressures near atmosphere.
    The main emphases of this work are the design and construction of a system for infrared analysis to investigate the phenomenon of adsorption of water inside a vacuum chamber. The experiment involves (a) a Fourier spectroscopic analysis to obtain spectral signals about the incident infrared, (b) a purge mechanism for a purified gas to remove water vapor and carbon dioxide from the system, and (c) an application of an electric field with polarized modulation to suppress interference from signals of gases absorbing in the light path. After testing and fine-tuning the light path, the experimental system can obtain the interference signals of infrared radiation. The sealing of the gas purge system has been improved to effectively eliminate the permeation of gases such as water vapor and carbon dioxide from the outside. The movable mirror in the Michelson interferometer maintains its stability independent of the rate of flow of the purge gas. During test experiments on filling the chamber with nitrogen or helium mixed with water vapor, the measured temperatures decreased to -47.6 oC(N2) and -68.1 oC(He) during evacuation reflecting the effect of adiabatic expansion. The absorption signal of water vapor after pumping for 4.7 s is about 0.005∼0.01 arbitrary units higher for the N2 / H2O gaseous mixture than for the He / H2O gaseous mixture. Tests of the polarization modulation technique indicate that signals from absorbing gases in the light path are removed when the ratio of the summation signal (amplitude of channel B) to the differential signal (amplitude of channel A) is less than 1.26. The result demonstrates the capability of observing a signal due to molecules adsorbed on a surface with an infrared analysis system and a polarization modulation technique, so as to improve our understanding of adsorption of water in a vacuum chamber.
    For purposes of testing, we applied the polarization modulation technique only on a standard sample (poly-l-lysine film on a gold-coated substrate). To investigate the effect of adiabatic expansion leading to the phenomenon of water adsorption, future work will focus on measuring adsorption spectra for materials in vacuum chambers and transforming spectral signals to units of surface coverage.

    目錄 中文摘要 i 英文摘要 iii 致謝 v 目錄 vi 表目錄 ix 圖目錄 x 第一章、 引言 1 第二章、 原理 5 2.1. 真空中的脫附與吸附 5 2.2. 絕熱膨脹 5 2.3. 分子的振動與轉動 7 2.4. 紅外光譜儀分析原理 8 2.4.1. 傅立葉分光術 9 2.4.2. 偏振光的掠角入射 15 2.4.3. 紅外光的偏振調制 16 第三章、 實驗系統與步驟 23 3.1. 實驗系統 23 3.1.1. 麥克森干涉光路 23 3.1.2. 掠角偏振調制光路 24 3.1.3. 真空系統 26 3.1.4. 氣體淨化系統 28 3.1.5. 數據擷取配置 28 3.2. 實驗步驟 30 3.2.1. 傅立葉分光術測試 30 3.2.2. 吹淨用氣體測試 31 3.2.3. 樣品準備 32 3.2.4. 水氣混合實驗 32 第四章、 實驗結果與討論 35 4.1. 系統測試 35 4.1.1. 標準樣品光譜測試 35 4.1.2. 吹淨用氣體測試 36 4.2. 加入水氣及混合氣體之測試 38 4.2.1. 溫度變化 38 4.2.2. 水氣混合氮氣或氦氣對水氣訊號之影響 39 4.3. 偏振調制測試 41 4.3.1. 標準片測試 41 4.3.2. 曝水實驗 43 第五章、 結論 45 參考文獻 49 表 57 圖 67 表目錄 表2-1、常見的氣體與實驗氣體的K值 57 表2-2、常見的削波函數之FWHM值與HS / HM值 58 表3-1、紅外光之光學元件波段範圍 59 表3-2、鋁合金A6063組成雜質成份(%) 60 表3-3、一般HNO3成份表 61 表3-4、一般HF雜質成份表 62 表4-1、不同壓力的空氣折射率 63 表4-2、常見氣體與實驗氣體的折射率 64 表4-3、水與水作用之吸收波數 65 表4-4、氧化鋁或氫氧化鋁與水作用之吸收波數 66 圖目錄 圖2-1、物理吸附與化學吸附位能曲線示意圖 67 圖2-2、水氣凝結量與曝水量關係圖 68 圖2-3、紅外光在大氣中的單光束光譜 69 圖2-4、分子振動種類 70 圖2-5、傅立葉分光術流程 71 圖2-6、單光源與連續光源之干涉光譜 72 圖2-7、單光源之單光束光譜 73 圖2-8、偶極的垂直與水平分佈 74 圖2-9、偏振光掠角入射後的相位變化 75 圖2-10、光彈偏振調制儀內部圖 76 圖2-11、晶體受力程度所對應的偏振型態 77 圖2-12、poly-l-lysine film的吸收光譜 78 圖3-1、實驗系統時體圖 79 圖3-2、麥克森干涉光路 80 圖3-3、氦氖雷射之干涉光譜與光束光譜 81 圖3-4、掠角偏振調制光路 82 圖3-5、光彈偏振調制儀 83 圖3-6、硒化鋅晶體中各波數對應之穿透率關係圖 84 圖3-7、紅外光分析系統 85 圖3-8、固定座、樣品座與樣品夾實體圖 86 圖3-9、水氣管路實體圖 87 圖3-10、分析腔上視圖 88 圖3-11、氣體淨化系統 89 圖3-12、數據擷取配置圖 90 圖3-13、紅外光譜的運算處理過程 91 圖3-14、偏振調制吸收光譜的運算處理過程 92 圖4-1、poly-l-lysine film光譜圖 93 圖4-2、實驗系統之poly-l-lysine film光譜圖 94 圖4-3、吹淨用氣體之露點計溼度量測圖 95 圖4-4、紅外光於乾燥空氣中之光譜 96 圖4-5、紅外光於吹淨用氣體中之光譜 97 圖4-6、紅外光於吹淨用氣體中之光譜 98 圖4-7、不同淨化時間對應之單光束光譜 99 圖4-8、不同淨化時間對應之單光束光譜比值 100 圖4-9、抽氣過程中之吸收光譜 101 圖4-10、隔絕抽氣裝置之吸收光譜 102 圖4-11、抽氣過程中之溫度變化 103 圖4-12、不同氮氣氣壓之吸收光譜 104 圖4-13、水氣混合於抽氣4.7秒之吸收光譜 105 圖4-14、水氣混合於抽氣4.7秒之吸收光譜 106 圖4-15、大氣中B Channel相位偏移180o之光譜 107 圖4-16、大氣中雙通道干涉譜之振幅比值約1.26之光譜 108 圖4-17、吹淨用氣體中雙通道干涉譜之振幅比值約1.26之光譜 109 圖4-18、吹淨用氣體中雙通道干涉譜之振幅比值約1.68∼1.69之光譜 110 圖4-19、大氣中雙通道干涉譜之振幅比值約1.68∼1.69之光譜 111 圖4-20、標準片浸泡去離子水兩小時於大氣中之光譜 112 圖4-21、標準片浸泡去離子水兩小時於抽氣5秒內之光譜 113 圖4-22、標準片浸泡去離子水12小時於抽氣前之光譜 114 圖4-23、標準片浸泡去離子水12小時於抽氣5秒內之光譜 115 圖4-24、標準片浸泡去離子水12小時於抽氣一小時後之光譜 116

    1.Y. C. Liu, S. C. Wu, J. R. Chen and H. S. Tzeng, “The outgassing and pumping effect of an ultrahigh vacuum system,” Chinese Journal of Physics 23, 273(1985).
    2.H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments,” Journal of Vacuum Science and Technology A 11, 2623(1993).
    3.J. F. O’Hanlon and J. J. Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure,” Journal of Vacuum Science and Technology A 9, 2802(1991).
    4.陳俊榮,曾湖興,劉遠中,“鋁合金超高真空系統的研究”,核子科學 24, 25(1987).
    5.M. Mozetic, “Discharge cleaning with hydrogen plasma,” Vacuum 61, 367(2001).
    6.A. Itoh, Y. Ishikawa and T. Kawabe, “Reduction of outgassing from stainless steel surface by glow discharge cleaning,” Journal of Vacuum Science and Technology A 6, 571(1998).
    7.J. R. Chen, G. Y. Hsuing and Y. C. Liu, “Secondary ion mass spectroscopy analysis for aluminum surface treated by glow discharge cleaning,” Journal of Vacuum Science and Technology A 13, 562(1995).
    8.D. R. Lide, “CRC Handbook of Chemistry and Physics,” 74th ed., Boca Raton, Florida, (1994)p.9.
    9.S.S. Inayoshi, S. Tsukahara, A. Kinbara, “Decrease of water vapor desorption by Si film coating on stainless steel,” Vacuum 53, 281(1999).
    10.K. Tatenuma, K. Uchida, T. Itoh, T. Momose, and H. Ishimaru, “Acquisition of clean ultrahigh vacuum using chemical treatment,” Journal of Vacuum Science and Technology A 16, 2693(1998).
    11.S. Takagi and H. Kazama, “Water vapor desorption from Molybdenite,” Vacuum 17, 719(1996).
    12.X. Ding, E. Garfunkel, G. Dong, S. Yang and X. Hou, “Summary abstract : The adsorption of water on clean and oxygen-covered Ag(100) studied by high resolution electron energy loss spectroscopy,” Journal of Vacuum Science and Technology A 4, 1468(1986).
    13.劉遠中、黃俊儒、吳宗岳、陳俊榮,“以不同溼度知氣體研究鋁合金表面熱釋氣”,真空科技 5, 8(1992).
    14.楊凱淵,“利用PSD方法研究鋁合金表面水釋氣行為”,碩士論文,國立清華大學原子科學系,(2000).
    15.楊佳螢,“水氣在光子引發釋氣實驗系統中的行為探討”,碩士論文,國立清華大學原子科學系,(2001).
    16.羅文彬,“以二次離子質譜術分析鋁合金表面曝水後受光照射之作用”,碩士論文,國立清華大學原子科學系,(2004).
    17.楊財烈,“鋁合金表面曝水後受光照射作用之探討”,碩士論文, 國立清華大學原子科學系,(2003).
    18.陳志敬,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學系,(2000).
    19.徐鴻特, “真空中絕熱膨脹作用之探討”,碩士論文,國立清華大學原子科學系,(2001).
    20.李仁佑,“真空中絕熱膨脹水氣吸附作用之討論”,碩士論文,國立清華大學原子科學系,(2003).
    21.林志龍,“利用核反應分析術分析真空中水氣”,碩士論文,國立清華大學原子科學系,(2006).
    22.陳志昇,“利用核反應分析法探討真空中絕熱膨脹之現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2007).
    23.G. K. Vemulapalli, “Physical Chemistry,” Ch. 32, Prentice-Hall International, New Jersey, (1993).
    24.John F. O’Hanlon, “A User’s Guide to Vacuum Technology,” Ch. 6, John Wiley and Sons, New York, (1980).
    25.F. W. Sears and G. L. Salinger, “Thermodynamics, Kinetic Theory and Statistical Thermodynamics,” Ch. 9, Addison-Wesley, London , (1986).
    26.J. R. Chen, G. Y. Hsiung, Y. J. Hsu, S. H. Chang, C. H. Chen, W. S. Lee, J. Y. Ku, C. K. Chan, L. W. Joung and W. T. Chou, “Water adsorption-desorption on aluminum surface,” Applied Surface Science 169-170, 679(2001).
    27.P. B. Fellgett, “Multiplex interferometric spectrometry for infrared measurements,” Journal of Physics Radium 19, 187(1958).
    28.A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” Philosophical Magazine 31, 256(1891).
    29.A. A. Michelson, “On the application of interference-methods to spectroscopic measurements,” Philosophical Magazine 34, 280(1892).
    30.J. Connes, and P. Connes, “Near-infrared planetary spectra by Fourier spectroscopy instruments and results,” Journal of the Optical Society of America 56, 896(1966).
    31.J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of Fourier series,” Mathematic Computation 19, 297(1965).
    32.C.C. Homes, “Fourier transform infrared spectroscopy,” Brookhaven National Laboratory, Upton, New York, (2007).
    33.P. Jacquinot, “New developments in interference spectroscopy,” Reports on Progress in Physics 23, 267(1960).
    34.R. G. Greenler, “Infrared study of adsorbed molecules on metal surface by reflection techniques,” Journal of Chemical Physics 44, 310(1966).
    35.J. C. Vickerman, “Surface Analysis:the Principal Techniques,” Ch. 3, John Wiley and Sons, New York, (1997).
    36.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy,” Vol. 2, John Wiley and Sons, Chichester, (2002) pp.1042.
    37.S. A. Francis and A. H. Allison, “Infrared spectra of monolayers on metal mirrors,” Journal of the Optical Society of America 49, 131 (1959).
    38.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy,” Vol. 2, John Wiley and Sons, Chichester, (2002) pp.982.
    39.D. Yang, J. C. Canit and E. Gaignebet, “Photoelastic modulator: polarization modulation and phase modulation,” Journal of Optics 26, 151(1995).
    40.M. Born and E. Wolf, “Principle of Optics:Electromagnetic Ttheory of Propagation, Interference and Diffraction of Light,” Ch. 13, Pergamon Press, New York, (1980).
    41.T. Buffeteau, B. Desbat and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films:experimental procedure and quantitative analysis,” Applied Spectroscopy 45 ,380(1991).
    42.E. Y. Jiang and M. S. Bradley, “A new approach to quantitative spectral conversion of PM-IRRAS:theory, experiments, and performance comparison with conventional IRRAS,” Thermo Electron Corporation, (2003).
    43.V. P. Tolstoy and I. V. Chernyshova, “Handbook of Infrared Spectroscopy of Ultrathin Films,” Ch. 4, John Wiley and Sons, New York, (2003).
    44.T. Oakberg, “Modulator interference effect in photoelastic modulators,” Hinds Instruments, (1998).
    45.P. Norton, “HgCdTe infrared detectors,” Opto-Electronics Review 10, 159(2002).
    46.R. Corn, “Rapid-scan Polarization-modulated Fourier-transform Infrared Reflection Absorption Spectroscopy,” Hinds Instruments, (1996).
    47.M. J. Green, B. J. Barner, and R. M. Corn, “Real time sampling electronics for double modulation experiments with Fourier transform spectrometers,” Review of Scientific Instruments 62, 1426(1991).
    48.B. J. Barner, M. J. Green, Ed. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real time sampling electronics,” Analytical Chemistry 63, 55(1991).
    49.H. Fakhruddin, “Measuring the refractive index of air using a vacuum chamber,” American Vacuum Society International Symposium, Baltimore, Maryland, (1998).
    50.J. C. Owens, “Optical refractive index of air:dependence on pressure, temperature and composition,” Applied Optics 6, 51(1967).
    51.A. H. Harvey, J. S. Gallagher and J. M. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” Journal of Physical and Chemical Reference Data 27, 761(1998).
    52.C. E. Bennett, “Dispersion and refractive index of nitrogen measures as functions of pressure by displacement interferometry,” Physical Review 37, 263(1931).
    53.F. Franks, “Physical chemistry of water,” Science 184, 152(1974).
    54.K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds,” Part. II, John Wiley and Sons, New York, (1978).
    55.R. H. Hauge, J. W. Kauffman and J. L. Margrave, “Infrared matrix-isolation studies of the interactions and reactions of Group 3A metal atoms with water,” Journal of the American Chemical Society 102, 6005(1980).
    56.J. E. Crowell, J. G. Chen, D. M. Hercules and J. T. Yates, “The adsorption and thermal decomposition of water on clean and oxygen-predosed Al(111),” Journal of Chemical Physics 86, 5804(1987).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE