研究生: |
葉家瑋 Chia-Wei Yeh |
---|---|
論文名稱: |
建立紅外光分析系統以探討真空中水氣的現象 Developing infrared analysis for the investigation of the behavior of water in vacuum |
指導教授: |
吳見明
Chien-Ming Wu 陳俊榮 June-Rong Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 傅立葉轉換 、麥克森干涉儀 、光彈偏振調制儀 、偏振調制吸收光譜 、紅外光 |
外文關鍵詞: | Fourier transform, Michelson interferometer, PEM, PM-IRRAS, IR |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有不少研究致力於絕熱膨脹效應對水氣吸附現象的探討,但由於受限於分析儀器之限制,大部份之方法皆無法從一大氣壓時便開始分析訊號。然而,此段時間可能是造成表面水氣附著的重要階段,因此本實驗的主要目的是建立一套新的實驗方法以有效的將分析條件逼近一大氣壓,以觀察表面水氣吸附現象。
本實驗的重點是設計並建立一套紅外光分析系統以探討真空腔中的水氣吸附現象,本實驗另包含:(一)利用傅立葉分光術擷取紅外光的光譜訊號(二)氣體淨化系統對移除系統內的水氣與二氧化碳的研究及(三)建立電場偏振調制方法以抑制光路上的氣體吸收干擾。實驗系統光路經測試、微調後可取得理想的紅外光之干涉訊號。而氣體淨化系統在改善系統的密合度之後,可抑制外部的氣體滲入並有效的移除系統內的水氣與二氧化碳,且於此氣體流動下,麥克森干涉光路之移動鏡仍可維持其穩定性。在水氣混合N2及He氣體之測試實驗中,發現於抽氣時,因絕熱膨脹效應導致最低溫度分別下降至-47.6 oC(N2)與-68.1 oC(He)。而於抽氣後4.7秒內,混合氮氣時之水氣吸收率比混合氦氣之情況下還高約0.005 arbitrary units∼0.01 arbitrary units。另外,在偏振調制測試實驗中發現,當雙通道干涉譜之振幅比值小於1.26時,可濾除光路上的氣體吸收干擾,顯示本實驗建立之紅外光系統及電場偏振調制方法可觀察到樣品表面之吸附訊號,而增進對真空腔中水氣之吸附了解。
目前僅將偏振調制方法應用於量測標準樣品片(poly-l-lysine film on a gold-coated substrate),未來仍需量測真空材料表面的吸收光譜,並將光譜訊號轉換為表面覆蓋度單位,以探討絕熱膨脹效應造成水氣吸附的現象。
Adiabatic expansion has the effect of causing adsorption of water on surfaces, but present analytical instruments do not allow implementation of an analysis beginning with pumping from atmospheric pressure, which is an important range in relation to the adsorption of water vapor on a sample surface. The purpose of this work is to establish a new experimental method to investigate the phenomenon of adsorption of water on a surface at pressures near atmosphere.
The main emphases of this work are the design and construction of a system for infrared analysis to investigate the phenomenon of adsorption of water inside a vacuum chamber. The experiment involves (a) a Fourier spectroscopic analysis to obtain spectral signals about the incident infrared, (b) a purge mechanism for a purified gas to remove water vapor and carbon dioxide from the system, and (c) an application of an electric field with polarized modulation to suppress interference from signals of gases absorbing in the light path. After testing and fine-tuning the light path, the experimental system can obtain the interference signals of infrared radiation. The sealing of the gas purge system has been improved to effectively eliminate the permeation of gases such as water vapor and carbon dioxide from the outside. The movable mirror in the Michelson interferometer maintains its stability independent of the rate of flow of the purge gas. During test experiments on filling the chamber with nitrogen or helium mixed with water vapor, the measured temperatures decreased to -47.6 oC(N2) and -68.1 oC(He) during evacuation reflecting the effect of adiabatic expansion. The absorption signal of water vapor after pumping for 4.7 s is about 0.005∼0.01 arbitrary units higher for the N2 / H2O gaseous mixture than for the He / H2O gaseous mixture. Tests of the polarization modulation technique indicate that signals from absorbing gases in the light path are removed when the ratio of the summation signal (amplitude of channel B) to the differential signal (amplitude of channel A) is less than 1.26. The result demonstrates the capability of observing a signal due to molecules adsorbed on a surface with an infrared analysis system and a polarization modulation technique, so as to improve our understanding of adsorption of water in a vacuum chamber.
For purposes of testing, we applied the polarization modulation technique only on a standard sample (poly-l-lysine film on a gold-coated substrate). To investigate the effect of adiabatic expansion leading to the phenomenon of water adsorption, future work will focus on measuring adsorption spectra for materials in vacuum chambers and transforming spectral signals to units of surface coverage.
1.Y. C. Liu, S. C. Wu, J. R. Chen and H. S. Tzeng, “The outgassing and pumping effect of an ultrahigh vacuum system,” Chinese Journal of Physics 23, 273(1985).
2.H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments,” Journal of Vacuum Science and Technology A 11, 2623(1993).
3.J. F. O’Hanlon and J. J. Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure,” Journal of Vacuum Science and Technology A 9, 2802(1991).
4.陳俊榮,曾湖興,劉遠中,“鋁合金超高真空系統的研究”,核子科學 24, 25(1987).
5.M. Mozetic, “Discharge cleaning with hydrogen plasma,” Vacuum 61, 367(2001).
6.A. Itoh, Y. Ishikawa and T. Kawabe, “Reduction of outgassing from stainless steel surface by glow discharge cleaning,” Journal of Vacuum Science and Technology A 6, 571(1998).
7.J. R. Chen, G. Y. Hsuing and Y. C. Liu, “Secondary ion mass spectroscopy analysis for aluminum surface treated by glow discharge cleaning,” Journal of Vacuum Science and Technology A 13, 562(1995).
8.D. R. Lide, “CRC Handbook of Chemistry and Physics,” 74th ed., Boca Raton, Florida, (1994)p.9.
9.S.S. Inayoshi, S. Tsukahara, A. Kinbara, “Decrease of water vapor desorption by Si film coating on stainless steel,” Vacuum 53, 281(1999).
10.K. Tatenuma, K. Uchida, T. Itoh, T. Momose, and H. Ishimaru, “Acquisition of clean ultrahigh vacuum using chemical treatment,” Journal of Vacuum Science and Technology A 16, 2693(1998).
11.S. Takagi and H. Kazama, “Water vapor desorption from Molybdenite,” Vacuum 17, 719(1996).
12.X. Ding, E. Garfunkel, G. Dong, S. Yang and X. Hou, “Summary abstract : The adsorption of water on clean and oxygen-covered Ag(100) studied by high resolution electron energy loss spectroscopy,” Journal of Vacuum Science and Technology A 4, 1468(1986).
13.劉遠中、黃俊儒、吳宗岳、陳俊榮,“以不同溼度知氣體研究鋁合金表面熱釋氣”,真空科技 5, 8(1992).
14.楊凱淵,“利用PSD方法研究鋁合金表面水釋氣行為”,碩士論文,國立清華大學原子科學系,(2000).
15.楊佳螢,“水氣在光子引發釋氣實驗系統中的行為探討”,碩士論文,國立清華大學原子科學系,(2001).
16.羅文彬,“以二次離子質譜術分析鋁合金表面曝水後受光照射之作用”,碩士論文,國立清華大學原子科學系,(2004).
17.楊財烈,“鋁合金表面曝水後受光照射作用之探討”,碩士論文, 國立清華大學原子科學系,(2003).
18.陳志敬,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學系,(2000).
19.徐鴻特, “真空中絕熱膨脹作用之探討”,碩士論文,國立清華大學原子科學系,(2001).
20.李仁佑,“真空中絕熱膨脹水氣吸附作用之討論”,碩士論文,國立清華大學原子科學系,(2003).
21.林志龍,“利用核反應分析術分析真空中水氣”,碩士論文,國立清華大學原子科學系,(2006).
22.陳志昇,“利用核反應分析法探討真空中絕熱膨脹之現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2007).
23.G. K. Vemulapalli, “Physical Chemistry,” Ch. 32, Prentice-Hall International, New Jersey, (1993).
24.John F. O’Hanlon, “A User’s Guide to Vacuum Technology,” Ch. 6, John Wiley and Sons, New York, (1980).
25.F. W. Sears and G. L. Salinger, “Thermodynamics, Kinetic Theory and Statistical Thermodynamics,” Ch. 9, Addison-Wesley, London , (1986).
26.J. R. Chen, G. Y. Hsiung, Y. J. Hsu, S. H. Chang, C. H. Chen, W. S. Lee, J. Y. Ku, C. K. Chan, L. W. Joung and W. T. Chou, “Water adsorption-desorption on aluminum surface,” Applied Surface Science 169-170, 679(2001).
27.P. B. Fellgett, “Multiplex interferometric spectrometry for infrared measurements,” Journal of Physics Radium 19, 187(1958).
28.A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” Philosophical Magazine 31, 256(1891).
29.A. A. Michelson, “On the application of interference-methods to spectroscopic measurements,” Philosophical Magazine 34, 280(1892).
30.J. Connes, and P. Connes, “Near-infrared planetary spectra by Fourier spectroscopy instruments and results,” Journal of the Optical Society of America 56, 896(1966).
31.J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of Fourier series,” Mathematic Computation 19, 297(1965).
32.C.C. Homes, “Fourier transform infrared spectroscopy,” Brookhaven National Laboratory, Upton, New York, (2007).
33.P. Jacquinot, “New developments in interference spectroscopy,” Reports on Progress in Physics 23, 267(1960).
34.R. G. Greenler, “Infrared study of adsorbed molecules on metal surface by reflection techniques,” Journal of Chemical Physics 44, 310(1966).
35.J. C. Vickerman, “Surface Analysis:the Principal Techniques,” Ch. 3, John Wiley and Sons, New York, (1997).
36.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy,” Vol. 2, John Wiley and Sons, Chichester, (2002) pp.1042.
37.S. A. Francis and A. H. Allison, “Infrared spectra of monolayers on metal mirrors,” Journal of the Optical Society of America 49, 131 (1959).
38.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy,” Vol. 2, John Wiley and Sons, Chichester, (2002) pp.982.
39.D. Yang, J. C. Canit and E. Gaignebet, “Photoelastic modulator: polarization modulation and phase modulation,” Journal of Optics 26, 151(1995).
40.M. Born and E. Wolf, “Principle of Optics:Electromagnetic Ttheory of Propagation, Interference and Diffraction of Light,” Ch. 13, Pergamon Press, New York, (1980).
41.T. Buffeteau, B. Desbat and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films:experimental procedure and quantitative analysis,” Applied Spectroscopy 45 ,380(1991).
42.E. Y. Jiang and M. S. Bradley, “A new approach to quantitative spectral conversion of PM-IRRAS:theory, experiments, and performance comparison with conventional IRRAS,” Thermo Electron Corporation, (2003).
43.V. P. Tolstoy and I. V. Chernyshova, “Handbook of Infrared Spectroscopy of Ultrathin Films,” Ch. 4, John Wiley and Sons, New York, (2003).
44.T. Oakberg, “Modulator interference effect in photoelastic modulators,” Hinds Instruments, (1998).
45.P. Norton, “HgCdTe infrared detectors,” Opto-Electronics Review 10, 159(2002).
46.R. Corn, “Rapid-scan Polarization-modulated Fourier-transform Infrared Reflection Absorption Spectroscopy,” Hinds Instruments, (1996).
47.M. J. Green, B. J. Barner, and R. M. Corn, “Real time sampling electronics for double modulation experiments with Fourier transform spectrometers,” Review of Scientific Instruments 62, 1426(1991).
48.B. J. Barner, M. J. Green, Ed. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real time sampling electronics,” Analytical Chemistry 63, 55(1991).
49.H. Fakhruddin, “Measuring the refractive index of air using a vacuum chamber,” American Vacuum Society International Symposium, Baltimore, Maryland, (1998).
50.J. C. Owens, “Optical refractive index of air:dependence on pressure, temperature and composition,” Applied Optics 6, 51(1967).
51.A. H. Harvey, J. S. Gallagher and J. M. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” Journal of Physical and Chemical Reference Data 27, 761(1998).
52.C. E. Bennett, “Dispersion and refractive index of nitrogen measures as functions of pressure by displacement interferometry,” Physical Review 37, 263(1931).
53.F. Franks, “Physical chemistry of water,” Science 184, 152(1974).
54.K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds,” Part. II, John Wiley and Sons, New York, (1978).
55.R. H. Hauge, J. W. Kauffman and J. L. Margrave, “Infrared matrix-isolation studies of the interactions and reactions of Group 3A metal atoms with water,” Journal of the American Chemical Society 102, 6005(1980).
56.J. E. Crowell, J. G. Chen, D. M. Hercules and J. T. Yates, “The adsorption and thermal decomposition of water on clean and oxygen-predosed Al(111),” Journal of Chemical Physics 86, 5804(1987).