簡易檢索 / 詳目顯示

研究生: 黃億富
Huang, Yi-Fu
論文名稱: TTK/hMps1在異常細胞分裂中調控p53蛋白之機制探討
The role of the spindle checkpoint kinase TTK/hMps1 in p53-dependent post mitotic checkpoint
指導教授: 張大慈
Chang, Margaret Dah-Tsyr
謝小燕
Shieh, Sheau-Yann
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 65
中文關鍵詞: 細胞分裂檢查點抑癌蛋白p53
外文關鍵詞: TTK/hMps1, p53, spindle checkpoint
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一些不良的條件下,細胞被迫長時間停在有絲分裂期而無法走出,最終細胞會嘗試適應這樣的環境,而在沒有細胞分裂之下就離開了有絲分裂期。這樣的過程會產生含有四倍數染色體的細胞,如此的細胞是不正常的,可藉由細胞凋亡的機制來消除這些不正常的細胞。此外,透過紡錘絲檢查點以及p53蛋白的作用,也可以讓那些不正常的細胞停在G1期而無法繼續增生。p53是一個抑癌蛋白,也是一個轉錄因子,透過轉錄活化它的下游基因,p53不但能阻止癌細胞的生長也能促使癌細胞走向死亡。Nocodazole和Taxol (紫杉醇)這一類破壞紡錘絲的藥物會活化p53,但是它們怎麼去活化p53的機制仍然不清楚。本研究發現在紡錘絲被破壞時,紡錘絲檢查點中的蛋白質激酶TTK/hMps1有活化p53 的功能。在試管中,TTK/hMps1磷酸化p53第15和第20位置的絲胺酸 (Serine) 以及第18位置的酥胺酸 (Threonine)。在細胞內,少了TTK/hMps1會減少因紡錘絲被破壞所引起的p53酥胺酸18的磷酸化; 相反的,在細胞內過表現TTK/hMps1會增加p53的磷酸化。這樣因TTK/hMps1所造成的p53磷酸化破壞了MDM2和p53之間的結合,也減少了MDM2所造成的p53降解,使得p53更為穩定。此外,紡錘絲被破壞時TTK/hMps1會和p53結合。當細胞長時間受到破壞紡錘絲的藥物攻擊時,少了TTK/hMps1如同少了p53一樣,都會讓細胞走向含有多倍數染色體的狀態,而這些可能都與TTK/hMps1所調控的p53第18位置的磷酸化加強了p53活化它的二個下游 p21以及Lats2的能力有關。進一步分析此磷酸化的功能,若是將p53第18位置的酥胺酸置換成天冬胺酸 (Aspartic acid) 以模擬磷酸化,或是將酥胺酸以丙胺酸 (Alanine)取代達到阻斷磷酸化的反應,前者模擬磷酸化的p53更能夠抑制含有四倍數染色體的細胞增生。綜合前面研究的結論,在紡錘絲被破壞時,透過磷酸化p53,紡錘絲檢查點中的蛋白質激酶TTK/hMps1和p53能夠共同去阻止細胞走向含有多倍數染色體的狀態,使得基因體的穩定性得以維持。


    Upon prolonged arrest in mitosis, cells undergo adaptation and exit mitosis without cell division. These tetraploid cells are arrested in the subsequent G1 phase in a spindle checkpoint and p53-dependent manner. p53 has long been known to be activated by spindle poison such as nocodazole and taxol, although the underlying mechanism is still unclear. In this study, evidence was presented which demonstrated that stabilization and activation of p53 by spindle disruption required the spindle checkpoint kinase TTK/hMps1. Down regulation of TTK/hMPS1 diminishes p53 response after spindle damage. In vitro, TTK/hMPS1 phosphorylates p53 on Ser15, Thr 18, and Ser20. Ablation of TTK/hMPS1 in vivo reduces spindle damage-induced p53 Thr18 phosphorylation and p53 response. Conversely, overexpression of TTK/hMPS1 enhances Thr18 phosphoylation and stabilizes p53 by disrupting the interaction with MDM2 and by abrogating MDM2-mediated p53 ubiquinylation. In addition, TTK/hMPS1 coimmunoprecipitates with p53 after spindle damage. Upon prolonged treatment with spindle poisons, down regulation of TTK/hMPS1 leads to polyploidy, a phenomenon closely mimicked by p53 ablation. TTK/hMPS1-mediated Thr18 phosphorylation enhances p53-dependent activation of not only p21 but also Lats2, two mediators of the post-mitotic checkpoint. Furthermore, a phospho-mimicking substitution at Thr18 (T18D) is more capable than the phospho-deficient mutant (T18A) in rescuing the tetraploid checkpoint defect of the p53-depleted cells. Our data indicate that by phosphorylating p53 Thr18, TTK/hMPS1 works with p53 to prevent polyploidy after spindle damage.

    Contents 中文摘要 .............................................................................................................1 Abstract .………………………………………………………………………2 Ⅰ. Introduction 1.1 The tumor suppressor protein p53..................................................................... 3 1.2 The regulation of p53 ………………………………………………………….3 1.3 Mitosis and the anaphase promoting complex (APC) ………………………...4 1.4 Aneuploidy and the spindle assembly checkpoint …………………………….5 1.5 TTK/hMps1 …………………………………………………………………...6 1.6 The p53-dependent postmitotic (tetraploidy) checkpoint ……………………..8 Ⅱ. Materials and Methods 2.1 Cell culture conditions and treatments ……………………………………….10 2.2 Plasmids and siRNA transfection …………………………………………….10 2.3 Cell lysis, immunoprecipitation and immunoblotting ……………….............. 11 2.4 Recombinant proteins………………………………………………………....12 2.5 GST pull-down assay………………………………………………………....13 2.6 In vitro kinase assay and immunoprecipitation/kinase assay ………………...14 2.7 In vivo ubiquitination assays ……………………………………………........14 2.8 Luciferase Reporter Assay ………………………………………………........15 2.9 Isolation of total RNA ………………………………………………………...15 2.10 Reverse transcription (RT)–PCR ……………………………………………16 2.11 Cell cycle analysis …………………………………………………………...16 Ⅲ. Results 3.1 Downregulation of TTK/hMps1 by siRNA attenuates the p53 response induced by spindle disruption. ………………………………………………...17 3.2 Down-regulation of TTK/hMps1 by siRNA diminishes p53 response after DNA damage. ………………………………………………….18 3.3 TTK/hMps1 interacts directly with p53. ……………………………………... 18 3.4 TTK/hMps1 stabilizes p53 through the p53 N-terminal domain. ...…………...19 3.5 TTK/hMps1 phosphorylates the p53 N-terminal domain in vitro. ………….....20 3.6 Downregulation of TTK/hMps1 by siRNA attenuates the p53 T18 phosphorylation induced by spindle disruption. ……………………............... 21 3.7 Down-regulation of TTK/hMps1 by siRNA diminishes p53 T18 and S20 phosphorylation after DNA damage. ……………………………………….....21 3.8 The stable TTK-p53 interaction is not absolutely required for TTK to phosphorylate p53. ………………………………………………….....22 3.9 Overexpression of WT but not TTK /hMps1-KD protects p53 from MDM2-mediated degradation. ………………………………………………...22 3.10 Down-regulation of TTK leads to impaired postmitotic checkpoint and polyploidy. …………………………………………………………………....23 3.11 The Thr18 phosphorylation is required for p53-dependent post mitotic checkpoint. ……………………………………………………………………24 3.12 MAD2 and BUB R1 participate in TTK-mediated T18 phosphorylation of p53 after spindle damage. ……………………..................24 Ⅳ. Discussion 4.1 TTK/hMps1 mediates p53-dependent tetraploidy checkpoint. ………………...26 4.2 p53 activation in response to spindle damage requires an intact spindle checkpoint. ………………………………………………………..................... 27 4.3 TTK/hMps1 participates in the p53 response after DNA damage. ...………......29 4.4 TTK/hMps1 stabilizes p53 by pathway besides Thr18 phosphorylation. ……………………………………………………………....30 4.5 The relative contribution of the p53 N-terminal and C-terminal domains in TTK/hMps1-mediated stabilization. …………………………………………..30 4.6 The feedback pathway between TTK/hMps1 and p53. ……………………......31 4.7 The role of TTK/hMps1 in maintaining genome stability ……………………..32 4.8 Future directions …………………………………………………………….....32 Ⅴ. References …………………………………………………………………35 Ⅵ. Figures Fig. 1. TTK/hMps1 knockdown by siRNA mitigates the p53 response after Taxol or nocodazole treatment. ...............................................................................43 Fig. 2. The half-life of p53 was reduced in TTK/hMps1-downregulated cells treate with Taxol. ………………………………………………….............. 44 Fig. 3. The IR-induced p53 response is diminished in TTK/hMps1-knockdown cells. ……………………………………….................................................. 45 Fig. 4. TTK/hMps1 interacts with p53 in vivo after spindle disruption or DNA damage in 293T cells. ………………………………………………...……46 Fig. 5. The p53 C-terminal domain interacts directly with TTK/hMps1 in vitro. ………………………………………………………………..…... 47 Fig. .6 The kinase domain of TTK/hMps1 interacts directly with p53 in vitro. ……………………………………………………………….………48 Fig. 7. TTK stabilizes p53. ………………………………………………….….......49 Fig. 8. TTK/hMps1 stabilizes p53 through the N-terminal domain. ……................ 50 Fig. 9. Overexpression of WT but not TTK-KD stabilizes the p53 N-terminal domain (N96, amino acid 1-96) and increases Thr18 phosphorylation of both transfected and endogenous p53. ……………………………... .....51 Fig. 10. TTK/hMps1 phosphorylates the N-terminal domain of p53. …………….. 52 Fig. 11. TTK/hMps1 phosphorylates p53 on Thr18 in vivo. ………………….... ....53 Fig. 12. The DNA damage-induced p53 phosphorylation is diminished in TTK/hMps1-knockdown cells. …………………………………………54 Fig. 13. TTK/hMps1 phosphorylates p53 in the absence of the p53 C-terminal region. ………………………………………………………....55 Fig. 14. MDM2-induced degradation of p53 is rescued by coexpression of WT but not TTK-KD. ……………………………….. ….56 Fig. 15. TTK stabilizes p53 by preventing p53 from binding and ubiquitination by MDM2. …………………………………………………………….. ….57 Fig. 16. TTK/hMps1 ablation ameliorates the postmitotic checkpoint. ............... ….58 Fig. 17. Tetraploidy is more efficiently suppressed by the phosphomimicking T18D mutant than by WT or the phosphodeficient T18A mutant …….. …59 Fig. 18. Phosphomimicking mutation at Thr18 increases p53 activity. ………... … 60 Fig. 19. The p53 T18D mutant transactivates the endogenous p21 gene better than the WT and the T18A mutant. …………………………………...... ...61 Fig. 20. MAD2 participates in the p53-dependent postmitotic checkpoint. ..........…62 Fig. 21. MAD2 and BUB R1 are involved in the p53 Thr18 phosphorylation in response to spindle damage. …………………….........63 Fig. 22. Downregulation of MAD2, or BUBR1 by siRNA does not affect the intrinsic kinase activity of TTK. ………………………….... ....64 Fig. 23. TTK/hMps1 mediates p53-dependent postmitotic checkpoint………....... .65

    Abrieu, A., Magnaghi-Jaulin, L., Kahana, J. A., Peter, M., Castro, A., Vigneron, S., Lorca, T., Cleveland, D. W., and Labbe, J. C. (2001). Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83-93.
    Andreassen, P. R., Lohez, O. D., Lacroix, F. B., and Margolis, R. L. (2001). Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12, 1315-1328.
    Aylon, Y., Michael, D., Shmueli, A., Yabuta, N., Nojima, H., and Oren, M. (2006). A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20, 2687-2700.
    Baek, K. H., Shin, H. J., Yoo, J. K., Cho, J. H., Choi, Y. H., Sung, Y. C., McKeon, F., and Lee, C. W. (2003). p53 deficiency and defective mitotic checkpoint in proliferating T lymphocytes increase chromosomal instability through aberrant exit from mitotic arrest. J Leukoc Biol 73, 850-861.
    Baker, D. J., Dawlaty, M. M., Galardy, P., and van Deursen, J. M. (2007). Mitotic regulation of the anaphase-promoting complex. Cell Mol Life Sci 64, 589-600.
    Bhonde, M. R., Hanski, M. L., Budczies, J., Cao, M., Gillissen, B., Moorthy, D., Simonetta, F., Scherubl, H., Truss, M., Hagemeier, C., et al. (2006). DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem 281, 8675-8685.
    Blagosklonny, M. V. (2006). Prolonged mitosis versus tetraploid checkpoint: how p53 measures the duration of mitosis. Cell Cycle 5, 971-975.
    Bode, A. M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805.
    Bouska, A., and Eischen, C. M. (2009). Mdm2 affects genome stability independent of p53. Cancer Res 69, 1697-1701.
    Busso, C. S., Iwakuma, T., and Izumi, T. (2009). Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 28, 1616-1625.
    Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., Pequignot, M. O., Casares, N., Valent, A., Mouhamad, S., et al. (2006). Apoptosis regulation in tetraploid cancer cells. Embo J 25, 2584-2595.
    Castillo, A. R., Meehl, J. B., Morgan, G., Schutz-Geschwender, A., and Winey, M. (2002). The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. J Cell Biol 156, 453-465.
    Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014.
    Clegg, H. V., Itahana, K., and Zhang, Y. (2008). Unlocking the Mdm2-p53 loop: ubiquitin is the key. Cell Cycle 7, 287-292.
    Di Como, C. J., Gaiddon, C., and Prives, C. (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19, 1438-1449.
    Dumaz, N., Milne, D. M., and Meek, D. W. (1999). Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Lett 463, 312-316.
    Fang, Y., Liu, T., Wang, X., Yang, Y. M., Deng, H., Kunicki, J., Traganos, F., Darzynkiewicz, Z., Lu, L., and Dai, W. (2006). BubR1 is involved in regulation of DNA damage responses. Oncogene 25, 3598-3605.
    Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., and Pellman, D. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043-1047.
    Ganem, N. J., and Pellman, D. (2007). Limiting the proliferation of polyploid cells. Cell 131, 437-440.
    Ganem, N. J., Storchova, Z., and Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17, 157-162.
    Ha, G. H., Baek, K. H., Kim, H. S., Jeong, S. J., Kim, C. M., McKeon, F., and Lee, C. W. (2007). p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation. Cancer Res 67, 7155-7164.
    Harms, K., Nozell, S., and Chen, X. (2004). The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61, 822-842.
    Harper, J. W., and Elledge, S. J. (2007). The DNA damage response: ten years after. Mol Cell 28, 739-745.
    Kanai, M., Ma, Z., Izumi, H., Kim, S. H., Mattison, C. P., Winey, M., and Fukasawa, K. (2007). Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells 12, 797-810.
    Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y., and Shkedy, D. (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96, 14973-14977.
    Kops, G. J., Weaver, B. A., and Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5, 773-785.
    Lanni, J. S., and Jacks, T. (1998). Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18, 1055-1064.
    Lavin, M. F., and Gueven, N. (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13, 941-950.
    Lavin, M. F., and Kozlov, S. (2007). ATM activation and DNA damage response. Cell Cycle 6, 931-942.
    Lee, H. J., Srinivasan, D., Coomber, D., Lane, D. P., and Verma, C. S. (2007). Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study. Cell Cycle 6, 2604-2611.
    Legube, G., Linares, L. K., Lemercier, C., Scheffner, M., Khochbin, S., and Trouche, D. (2002). Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. Embo J 21, 1704-1712.
    Leng, M., Chan, D. W., Luo, H., Zhu, C., Qin, J., and Wang, Y. (2006). MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability. Proc Natl Acad Sci U S A 103, 11485-11490.
    Levav-Cohen, Y., Haupt, S., and Haupt, Y. (2005). Mdm2 in growth signaling and cancer. Growth Factors 23, 183-192.
    Lindberg, R. A., Fischer, W. H., and Hunter, T. (1993). Characterization of a human protein threonine kinase isolated by screening an expression library with antibodies to phosphotyrosine. Oncogene 8, 351-359.
    Malmanche, N., Maia, A., and Sunkel, C. E. (2006). The spindle assembly checkpoint: preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett 580, 2888-2895.
    Marchenko, N. D., Zaika, A., and Moll, U. M. (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275, 16202-16212.
    Margolis, R. L., Lohez, O. D., and Andreassen, P. R. (2003). G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 88, 673-683.
    Maya, R., Balass, M., Kim, S. T., Shkedy, D., Leal, J. F., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y., et al. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15, 1067-1077.
    Meek, D. W. (2000). The role of p53 in the response to mitotic spindle damage. Pathol Biol (Paris) 48, 246-254.
    Mills, G. B., Schmandt, R., McGill, M., Amendola, A., Hill, M., Jacobs, K., May, C., Rodricks, A. M., Campbell, S., and Hogg, D. (1992). Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem 267, 16000-16006.
    Musacchio, A., and Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8, 379-393.
    Olivier, M., Eeles, R., Hollstein, M., Khan, M. A., Harris, C. C., and Hainaut, P. (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19, 607-614.
    Olsson, A., Manzl, C., Strasser, A., and Villunger, A. (2007). How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14, 1561-1575.
    Pinsky, B. A., and Biggins, S. (2005). The spindle checkpoint: tension versus attachment. Trends Cell Biol 15, 486-493.
    Rieder, C. L., and Maiato, H. (2004). Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7, 637-651.
    Riley, T., Sontag, E., Chen, P., and Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9, 402-412.
    Rinaldo, C., Prodosmo, A., Mancini, F., Iacovelli, S., Sacchi, A., Moretti, F., and Soddu, S. (2007). MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25, 739-750.
    Sczaniecka, M. M., and Hardwick, K. G. (2008). The spindle checkpoint: how do cells delay anaphase onset? SEB Exp Biol Ser 59, 243-256.
    Shi, Q., and King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038-1042.
    Shimogawa, M. M., Graczyk, B., Gardner, M. K., Francis, S. E., White, E. A., Ess, M., Molk, J. N., Ruse, C., Niessen, S., Yates, J. R., 3rd, et al. (2006). Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol 16, 1489-1501.
    Shinozaki, T., Nota, A., Taya, Y., and Okamoto, K. (2003). Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22, 8870-8880.
    Stewart, Z. A., Tang, L. J., and Pietenpol, J. A. (2001). Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner. Oncogene 20, 113-124.
    Storchova, Z., and Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. J Cell Sci 121, 3859-3866.
    Sullivan, M., and Morgan, D. O. (2007). Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8, 894-903.
    Tan, A. L., Rida, P. C., and Surana, U. (2005). Essential tension and constructive destruction: the spindle checkpoint and its regulatory links with mitotic exit. Biochem J 386, 1-13.
    Toledo, F., and Wahl, G. M. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6, 909-923.
    Vigneron, S., Prieto, S., Bernis, C., Labbe, J. C., Castro, A., and Lorca, T. (2004). Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15, 4584-4596.
    Vogel, C., Kienitz, A., Hofmann, I., Muller, R., and Bastians, H. (2004). Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23, 6845-6853.
    Vousden, K. H., and Lane, D. P. (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8, 275-283.
    Vousden, K. H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2, 594-604.
    Weaver, B. A., and Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell 8, 7-12.
    Wei, J. H., Chou, Y. F., Ou, Y. H., Yeh, Y. H., Tyan, S. W., Sun, T. P., Shen, C. Y., and Shieh, S. Y. (2005). TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem 280, 7748-7757.
    Winey, M., and Huneycutt, B. J. (2002). Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21, 6161-6169.
    Yeh, Y. H., Huang, Y. F., Lin, T. Y., and Shieh, S. Y. (2009). The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 28, 1366-1378.
    Zhu, S., Wang, W., Clarke, D. C., and Liu, X. (2007). Activation of Mps1 promotes transforming growth factor-beta-independent Smad signaling. J Biol Chem 282, 18327-18338.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE