研究生: |
曾家凱 Tseng, Chia-Kai |
---|---|
論文名稱: |
探討銅(I)催化碳-氮偶合反應之中間產物 Intermediates in the copper-catalyzed C-N cross-coupling reaction |
指導教授: |
韓建中
Han,Chien-Chung 徐新光 Shyu, Shin-Guang |
口試委員: |
洪上程
Hung, Shang-Cheng 蔡易州 Tsai,Yi-Chou 林俊成 Lin,Chun-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 180 |
中文關鍵詞: | 電灑式游離化質譜 、碳-氮耦合 、叔丁醇鈉 、1,10-二氮雜菲 、銅(I) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究銅(I)催化碳-氮耦合反應機制,以4-碘甲苯和二苯胺為銅(I)催化碳-氮耦合反應之起始物,1,10-二氮雜菲為銅(I)之配位基、以叔丁醇鈉為鹼,甲苯為溶劑的反應條件下,在室溫下產生錯合物[Na(phen)3][Cu(NPh2)2] (2)。1,10-二氮雜菲配位基與鈉陽離子結合形成[Na(phen)3]+,二苯胺脫氫攻擊銅(I)產生[Cu(NPh2)2]-,從銅(I)催化碳-氮耦合反應中分離出錯合物2,並以化學計量的反應條件和4-碘甲苯在120 oC反應四十小時後可獲得70.3%的碳-氮耦合產物。此結果顯示錯合物2為銅(I)催化的碳-氮耦合反應中之中間產物。利用電灑式游離化質譜儀觀察銅(I)催化碳-氮耦合反應過程之中間產物,根據同位素理論分布圖推測在催化過程中有[Cu(NPh2)2]-、[Cu(NPh2)I]-和Na[Cu(NPh2)2(p-tolyl)]+的分子離子訊號,根據Na[Cu(NPh2)2(p-tolyl)]+結構,推斷銅(I)催化的碳-氮耦合反應機制中,4-碘甲苯會與[Cu(NPh2)2]-進行氧化加成反應,產生中間產物[Cu(NPh2)2(p-tolyl)I]-。
當使用不同的鹼參與反應時,銅(I)催化碳-氮耦合反應機制會有所改變,如以叔丁醇鈉/碳酸鉀取代單純叔丁醇鈉為鹼反應時,產率從38%提升到93%,以電灑式游離化質譜儀在120 oC之催化反應條件下觀察,發現除了[Cu(NPh2)2]-、[Cu(NPh2)I]-的分子離子訊號外,還有K[(phen)Cu(NPh2)(p-tolyl)]+的分子離子訊號。我們推測K[(phen)Cu(NPh2)(p-tolyl)]+分子離子訊號是由甲苯自由基加成至錯合物[(phen)Cu(NPh2)]而得的。經由加入自由基抑制劑(TEMPO)可發現產率由原本的93%降到64%。反之,在叔丁醇鈉為鹼的反應條件下,產率則無明顯改變(38%降到35%)。此等結果顯示叔丁醇鈉/碳酸鉀為鹼的條件下,銅(I)催化碳-氮耦合反應機制除了進行2e的氧化加成,還原脫除反應路徑外,也會有自由基加成反應之路徑出現,導致產率的提升。
在4-碘甲苯和二苯胺為起始物,1,10-二氮雜菲為配位基,甲苯為溶劑的反應條件下,以叔丁醇鉀取代叔丁醇鈉為鹼時,室溫時產生錯合物[K3(phen)8][Cu(NPh2)2]3 (4)。此錯合物在120 oC以化學計量的反應條件和4-碘甲苯反應六小時可得50%的碳-氮耦合產物。加入自由基抑制劑(TEMPO)發現產率下降至12%,相較於錯合物2在120 oC以化學計量的反應條件和4-碘甲苯反應六小時獲得到61%的產物,並且在加入TEMPO時其產率微降至50%,顯示錯合物2與錯合物4的反應性並不相同,因此我們推測陽離子的不同會導致在碳-氮耦合反應機制下,錯合物4大部分是經由自由基加成反應路徑,反之錯合物2則是大部分經由2e氧化加成反應路徑。
My research is about copper-catalyzed C-N cross coupling reaction. Initially, a mixture of diphenylamine, 4-iodotoluene, NaOtBu, CuI and 1,10-phenanthroline was allowed to stir in toluene at room temperature. A yellow precipitate was obtained and identified as complex [Na(phen)3][Cu(NPh2)2] (2). This complex was allowed to react with two equivalents of 4-iodotoluene in the absence of NaOtBu and obtained 70.3% (GC yield). These observation suggest that complex 2 is an intermediate in the CuI/phen/NaOtBu catalytic system. ESI-MS analysis of the reaction solution was undertaken and the [Cu(NPh2)2]-, [Cu(NPh2)I]- and Na[Cu(NPh)2(p-tolyl)]+ were observed, which are confirmed to their isotopic distribution. Base on these results, we proposed that the complex 2 first react with 4-iodotoluene then through an reductive elimination to produce the product.
In addition, a mixed base (K2CO3/NaOtBu) copper(I)-catalyzed C-N cross coupling reaction was found to have a higher than double catalytic reactivity than that of using only NaOtBu as the base. In situ ESI-MS analysis for the catalytic system under the catalytic reaction condition reveals the presence of [Cu(NPh2)2]-, [Cu(NPh2)I]- and K[(phen)Cu(NPh2)(p-tolyl)]+ suggesting that they are intermediates in the reaction. The formation of the Cu(II) complex, K[(phen)Cu(NPh2)(p-tolyl)]+, implies that a free radical [CH3C6H4]• reacts with the [(phen)Cu(NPh2)] by a radical path. In order to confirm the existence of the free radical path, the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added and the yield of the reaction reduced from 93% to 64%. While the addition of TEMPO to the catalytic system with NaOtBu as the base, the yield only slightly reduced by 7% (38% to 35%). Based on these observations, a reaction mechanism composed of a free radical path and a 2e oxidative addition path is proposed.
Furthermore, complexes [K3(phen)8][Cu(NPh2)2]3 (4) and 2 have been isolated from the catalytic C-N cross coupling reaction with the CuI-phen- MOtBu (for M= K, Na) respectively. The stoichiometric reaction of complex 2 with 4-iodotoluene undergoes more efficiently than that of complex 4 under the similar conditions. The yield of the stoichiometric reaction of complex 4 with 4-iodotoluene decreased dramatically from 50% to 12% by the addition of TEMPO, indicating that the reaction was major going through a radical pathway. When TEMPO was added to the stoichiometric reaction of complex 2 with 4-iodotoluene, the yield of the reaction decreased only slightly from 61% to 50% indicating that the reaction was major going through a 2e oxidative addition pathway.
1. Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185.
2. (a) Sadighi, J. P.; Harris, M. C.; Buchwald, S. L. Tetrahedron Lett. 1998, 39, 5327-5330. (b) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046-2067.
3. (a) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar -Roman, L. M. J. Org. Chem. 1999, 64, 5575-5580. (b) Ferreira, I. C. F. R.; Queiroz, M. J. R. P.; Kirsch, G. Tetrahedron 2003, 59, 975-981. (c) Venkat Reddy, Ch.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2005, 7, 4427-4430. (d) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686-6687.
4. (a) Barder, T. E.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 12003-12010. (b) Erhardt, S.; Grushin, V. V.; Kilpatrick, A. H.; Macgregor, S. A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2008, 130, 4828-4845.
5. Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933-2936.
6. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941-2944.
7. Lam, P. Y. S.; Deudon, S.; Kristin, M. A.; Li, R.; He, M.; DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600-7601.
8. Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett. 2002, 43, 3091-3094.
9. (a) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954-6971. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337-2364. (c) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2008, 47, 3096-3099. (d) D. Ma, Q. Cai, Acc. Chem. Res. 2008, 41, 1450-1460. (e) Ley, S. V.; Thomas A. W. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.
10. (a) Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 9971-9983. (b) Zhang, S. L.; Liu, L.; Fu, Y.; Guo, Q. X. Organometallics 2007, 26, 4546-4554. (c) Kaddouri, H.; Vicente, V.; Ouali, A.; Ouazzani, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 333-336.
11. Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382-2384.
12. Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691-1692.
13. Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927-928.
14. Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609-3612.
15. Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem. Int. Ed. 1995, 34, 1348-1350.
16. Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 9613-9620.
17. (a) Ariafard, A.; Hyland, C. J. T.; Canty, A. J.; Sharma, M.; Yates, B. F. Inorg. Chem. 2011, 50, 6449-6457. (b) Christmann, U.; Pantazis, D. A.; Benet-Buchholz, J.; McGrady, J. E.; Maseras, F.; Vilar, R. J. Am. Chem. Soc. 2006, 128, 6376-6390.
18. Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552-13554.
19. Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054-3131.
20. Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315-4317.
21. Wong, K.-T.; Kua, S.-Y.; Yen, F.-W. Tetrahedron Lett. 2007, 48, 5051-5054.
22. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459-12467.
23. Yang, M.; Liu, F. J. Org. Chem. 2007, 72, 8969-8971.
24. Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133-136.
25. Pu, Y.-M.; Ku, Y.-Y.; Grieme, T.; Henry, R.; Bhatia, A. V. Tetrahedron Lett. 2006, 47, 149-153.
26. Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421-7428.
27. Phillips, D. P.; Hudson, A. R.; Nguyen, B.; Lau, T. L.; McNeill, M. H.; Dalgard, J. E.; Chen, J.-H.; Penuliar, R. J.; Miller, T. A.; Zhi, L. Tetrahedron Lett. 2006, 47, 7137-7138.
28. Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164-5173.
29. Periasamy, M.; Vairaprakash, P.; Dalai, M. Organometallics 2008, 27, 1963-1966.
30. Yamamoto, T.; Ehara, Y.; Kubota, M.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1980, 53, 1299-1302.
31. Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4120-4121.
32. Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 9971-9983.
33. Zhang, S.; Ding, Y. Organometallics 2011, 30, 633-641.
34. Cohen, T.; Lewarchik, R. J.; Tarino, J. Z. J. Am. Chem. Soc. 1974, 96, 7753-7760.
35. Paine, A. J. J. Am. Chem. Soc. 1987, 109, 1496-1502.
36. Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205-6213.
37. http://bbs.instrument.com.cn/shtml/20061031/609861/
38. http://www.chm.bris.ac.uk/ms/theory/esi-ionisation.html
39. Wilson, S. R.; Perez, J.; Pasternak, A. J. Am. Chem. Soc. 1993, 115, 1994-1997.
40. Guo, H.; Qian, R.; Liao, Y.; Ma, S.; Guo, Y. J. Am. Chem. Soc. 2005, 127, 13060-13064.
41. Marquez, C.; Metzger, J. O. Chem. Commun. 2006, 1539-1541.
42. Buarque, C. D.; Pinho, V. D.; Vaz, B. G.; Eberlin, M. N.; da Silva, A. J. M.; Costa, P. R. R. J. Organomet. Chem. 2010 , 695 , 2062-2067.
43. (a) Aalten, H. L.; van Koten, G.; Grove, D. M.; Kuilman, T.; Piekstra, O. G.; Hulshof, L. A.; Sheldon, R. A. Tetrahedron 1989, 45, 5565-5578. (b) Whitesides, G. M.; Sadowski, J. S.; Lilburn, J. J. Am. Chem. Soc. 1974, 96, 2829-2835. (c) Saegusa, T.; Tsuda, T.; Hashimoto, T. J. Am. Chem. Soc. 1972, 94, 658-659.
45. Tseng, C.-K.; Lee, C.-R.; Han, C.-C.; Shyu, S.-G. Chem. Eur. J. 2011, 17, 2716-2723.
45. Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 130, 7734-7735.
46. Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737-16740.
47. Monguchi, Y.; Kitamoto, K.; Ikawa, T.; Maegawa, T.; Sajikia, H. Adv. Synth. Catal. 2008, 350, 2767-2777.
48. Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537-15539.
49. Giri, R.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 15860-15863.
50. Tseng, C.-K.; M.-C. Tseng,; Han, C.-C.; Shyu, S.-G. Chem. Commun. 2011, 47, 6686-6688.