簡易檢索 / 詳目顯示

研究生: 劉家興
Liu, Chia-Hsing
論文名稱: 滾壓式奈米壓印之製程技術整合於大面積軟性電子產品之研究
Developing Nanostructures on Large-Area Soft Electronic Devices by Using Roll-to-Roll Nanoimprinting Technology
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 余沛慈
Yu, Pei-Chen
張復瑜
Chang, Fuh-Yu
傅建中
Fu, Chien-Chung
冉曉雯
Zan, Hsiao-Wen
羅丞曜
Lo, Cheng-Yao
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 91
中文關鍵詞: 奈米壓印近零殘餘層噴墨凹版印刷蛾眼結構抗反射超疏水捲對捲
外文關鍵詞: nanoimprint, near-zero residual layer, inkjet printing, offset gravure coater, moth-eye nanostructure, anti-reflection property, superhydrophobic property, roll-to-roll (R2R)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個新型的方法論,主要是整合塗佈製程與捲對捲奈米壓印製程,製作近零殘餘層之奈米結構於撓性基板上;其中,塗佈製程為設計塗佈圖案來符合奈米壓印模具結構尺度。論文架構方面,首先是建立一個符合各種塗佈製程於捲對捲奈米壓印的理論模型;接著發展一個方法論,整合塗佈製程與壓印製程的理論模型,並用製程參數的最佳化來達到最小殘餘層厚度的奈米結構。最後,透過實驗結果來驗證理論模型與最佳化方法的正確性。
    捲對捲奈米壓印技術是大面積軟性電子產品的關鍵技術之一,在整個滾筒壓印與傳輸的過程中,壓印品質與產量息息相關,包括基板的機械性質,塗膜厚度,傳輸張力與運轉速度等。本研究採用噴墨與凹版印刷的塗佈方式,將低黏度溶液附著於基板上,控制單位面積內光阻的體積,提升塗佈的均勻性。最後,利用蛾眼結構翻製的軟性模具貼附於滾輪上,近零殘餘層結構的光學穿透率在可見光達96.2%,且具有超疏水特性表面接觸角達153°,以及紅外線穿透率降至5%以下。


    This thesis proposes a novel methodology that integrates a coating process and roll-to-roll nanoimprint lithography (R2R NIL) to achieve the near-zero thickness of the residual layer of nanostructures. In this study, the coating process is aimed at forming specific patterns, in correspondence with the desired nanostructures, instead of only a thin film on the substrate, for attaining nanostructures with a near-zero residual layer. First, we constructed the theoretical models of various coating processes in association with the R2R NIL. Second, a novel methodology that integrates coating and imprinting processes is proposed based on the developed theoretical models. Third, a method for minimizing the thickness of the residual layer of the nanostructure was developed by optimizing the process parameters. Finally, we performed an experimental study to verify the feasibility of the theoretical models and optimization method.
    R2R nanoimprint technology has already shown potential in the manufacturing of soft electronics-related products. However, the filling ratio and web transportation performance of R2R nanoimprinting depends on several mechanical parameters, and their effects must be evaluated for system optimization and device integrity considerations. This study began with the theoretical modelling of coating technologies, such as an inkjet printer and offset gravure coater for coating the ultraviolet resist with the controlled pattern and volume on the polyethylene terephthalate (PET) substrate, to reduce the residual layer. In the imprint process, the original thickness and uniformity of the resist considerably influences the thickness of the residual layer. As the initial thickness of the resist becomes thinner, the thickness of the residual layer becomes thinner accordingly.
    Finally, we developed a fabrication process for the large-area antireflection near-zero residual layer nanostructure on a PET substrate with a transmittance ratio of 96.2% in visible spectroscopy, contact angle of 153°, and transmittance ratio of 5% in infrared ray.

    摘要 I Abstract II Contents IV Index of Figures VI Index of Tables IX Chapter 1 Introduction 1 1-1 Background 1 1-2 Literature Review 2 1-2-1 Coating Technology 2 1-2-2 Nanoimprint Lithography 7 1-2-3 Application of Nanostructure 12 1-3 Objective and Content 20 Chapter 2 Fluidic Simulation and Realization for Inkjet Nano SFIL 22 2-1 Droplet Arrays Arrangement 22 2-2 Physical Model 25 2-3 Parameters of Flow Environment 27 2-4 Results of the Simulation 29 2-5 Summary 33 Chapter 3 Nanostructure with a Near-Zero Residual Layer 34 3-1 Inkjet Printing 34 3-1-1 Materials 34 3-1-2 Coating Patterns 36 3-1-3 Droplet Volume 39 3-2 Ultraviolet Nanoimprint Lithography 40 3-2-1 Ultraviolet Nanoimprint Lithography 40 3-2-2 Silver Nanostructures 44 3-2-3 Spin Coating 46 3-3 Summary 48 Chapter 4 Silver Soft Mold Replication 49 4-1 Coating Silver Nanoparticle Liquid 49 4-2 Hot Embossing and Soft Bake 52 4-3 Summary 58 Chapter 5 Fabrication of Large-Area Nanostructure on the Flexible Substrate 62 5-1 Roll-to-Roll Machine 62 5-2 Ar-O2 Plasma Ashing 66 5-3 Effective Medium Theory 68 5-4 Antiinfrared Effect of the Moth-Eye Nanostructure 71 5-5 Experimental Results 75 5-6 Summary 79 Chapter 6 Conclusion and Future Studies 81 6-1 Conclusion 81 6-2 Future Studies 82 6-2-1 Reducing Residual Layer 83 6-2-2 Designing and Fabricating Functional Nanostructures 83 Reference 86

    1.H.M. Thompson, N. Kapur, P.H. Gaskell, J.L. Summers, S.J Abbott, 2001, “A Theoretical and Experimental Investigation of Reservoir-fed, Rigid-roll coating,” Chemical Engineering Science, Vol. 56, p. 4627-4641.
    2.J. Dembický, 2010, “Simulation of the Coating Process,” FIBRES & TEXTILES in Eastern Europe, Vol. 18, p. 79-83.
    3.Y. R. Chang, H. M. Chang, C. F. Lin, T. J. Liu, P. Y. Wu, 2007, “Three minimum wet thickness regions of slot die coating,” Journal of Colloid and Interface Science, Vol. 308, p. 222-230
    4.C.J. Noakes, P.H. Gaskell, H.M. Thompson, J.B. Ikin, 2002, “Streak-Line Defect Minimization in Multi-Layer Slide Coating Systems,” Chemical Engineering Research and Design, Vol. 80, p. 449-463
    5.L.W. Schwartz, 2002, “Numerical modeling of liquid withdrawal from gravure cavities in coating operations; the effect of cell pattern,” Journal of Engineering Mathematics, Vol.42, p.243–253.
    6.H. J. Chang, M. H. Tsai, W. S. Hwang, 2012, “The Simulation of Micro Droplet Behavior of Molten Lead-free Solder in Inkjet Printing Process and Its Experimental Validation,” Applied Mathematical Modelling, Vol. 36, p. 3067-3079
    7.Z. J. ZHOU, Z. F. YANG, Q. M. YUAN, 2008, “Barium Titanate Ceramic Inks for Continuous Ink-jet Printing Synthesized by Mechanical Mixing and Sol-gel Methods,” Transactions of Nonferrous Metals Society of China, Vol. 18, p. 150-154
    8.N. Link, R. Semiat, 2009, “Ink Drop Motion in Wide-format Printers: I. Drop Flow from Drop-On-Demand (DOD) Printing Heads,” Chemical Engineering and Processing: Process Intensification, Vol. 48, p. 68-83.
    9.K. I. Lee, W. H. Han, S. H. Kim, C. S. Lee, and J. W. Cho, 2009, “Pressure Dependence of Drop Size in Electrohydrodynamic Inkjet Printing,” IEEE international Symposium on Assembly and Manufactiring, p.17-20.
    10.S. Y. Chou, P. R. Krauss, P. J. Renstrom, 1996, “Nanoimprint lithography,” Journal of Vacuum Science & Technology B, Vol. 14, p. 4129-4133.
    11.H. Yoon, H. E. Jeong, T. Kim, T. J. Kang, D. Tahk, K. Char, K. Y. Suh, 2009,"Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition," Nano Today, Vol, 4, p. 385-392.
    12.Y. Zhao, E. Berenschot, H. Jansen, N. Tas, J. Huskens, M. Elwenspoek, 2009, "Sub-10 nm silicon ridge nanofabrication by advanced edge lithography for NIL applications," Microelectronic Engineering, Vol. 86, p. 832-835.
    13.G. L. W. Cross, 2006, "The production of nanostructures by mechanical forming," Journal of Physics D: Applied Physics, Vol. 39, p. 363-386.
    14.N. Bogdanski , M. Wissen, A. Ziegler, H.C. Scheer, 2005, ” Temperature-reduced nanoimprint lithography for thin and uniform residual layers,” Microelectronic Engineering, Vol.78, p.598–604.
    15.H. Tan, A. Gilbertson, S. Y. Chou, 1998, "Roller nanoimprint lithography," Journal of Vacuum Science & Technology B, Vol. 16, p. 3926-3928.
    16.C. H. Liu, C. K. Sung, C. Y. Lo, 2012, "Fluidic simulation and realization for inkjet nano SFIL ," 12th IEEE Conference on Nanotechnology (IEEE-NANO), p.1-5.
    17.C.Y. Lo, O.H. Huttunen, J. Hiitola-Keinänen, J. Petäjä, H. Fujita, H. Toshiyoshi, 2010, "MEMS-controlled paper-like transmissive flexible display," Journal of microelectromechanical systems, Vol.19, p. 410-418.
    18.Y. Wu, Y. Li, B.S. Ong, 2007,"A simple and efficient approach to a printable silver conductor for printed electronics," Journal of the american chemical society, Vol. 129, p. 1862-1863.
    19.C.Y. Lo, Y.R. Huang, K.S. Liao, S.A. Kuo, S.P. Wei, 2011, "Zero power consumption visual curvature sensor by flexible interferometer," Sensors and Actuators A: Physical, Vol.169, p.295-300 .
    20.B. Riley, 2007, "Anti-fraud technologies: a business essential in the card industry," Card Technology Today, Vol. 19, p.10-11.
    21.D. Xia, X. He, Y.B. Jiang, G.P. Lopez; S.R.J. Brueck, 2010, "Tailoring anisotropic wetting properties on submicrometer-scale periodic grooved surfaces," Langmuir: the ACS journal of surfaces and colloids, Vol. 26, p. 2700-2706.
    22.H. Tan, A. Gilbertson and S. Y. Chou, 1998, “Roller nanoimprint lithography,” Journal of Vacuum Science and Technology B, Vol. 16, No. 6, p. 3926-3928.
    23.M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst and C. G. Willson, 2000, “Step and Flash Imprint Lithography for Sub-100 nm Patterning,” Proceedings of SPIE, Vol. 3997, p. 453-457.
    24.S. Y. Chou, C. Keimel and J. Gu, 2002, “Ultrafast and Direct Imprint of Nanostructures in Silicon,” Nature, Vol. 417, p. 835-837.
    25.X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang and A. F. Yee, 2002, “Reversal Imprinting by Transferring Polymer from Mold to Substrate,” Journal of Vacuum Science and Technology B, Vol. 20, No. 6, p. 2872-2876.
    26.L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang and A. F. Yee, 2002,“Nanoimprinting over Topography and Multilayer Three-dimensional Printing,” Journal of Vacuum Science and Technology B, Vol. 20, No. 6, p. 2881-2886.
    27.M. C. Cheng, H. Y. Hsiung, Y. L. Hsueh, H. Y. Chen and C. K. Sung, 2007, “The Effect of Thin-film Thickness on the Formation of Metallic Patterns by Direct Nanoimprint Process,” Journal of Materials Processing Technology, Vol. 191, No. 1-3, p. 326-330.
    28.C. W. Hsieh, H. Y. Hsiung, Y. T. Lu, C. K. Sung and W. H. Wang, 2007, “Fabrication of Subwavelength Metallic Structures by Using Metal Direct Imprinting Process,” Journal of Physics D: Applied Physics, Vol. 40, p. 3440-3447.
    29.B. Riley, 2007, “Anti-fraud Technologies: A Business Essential in the Card Industry,” Card Technology Today, Vol.19, p.10-11.
    30.S. Lan, H. Lee, J. Ni, 2008, "Survey on Roller-type Nanoimprint Lithography (RNIL) Process," International Conference on Smart Manufacturing Application, Korea, p. 371-376.
    31.V. N. Truskett, M. P.C. Watts, 2006, “Trends in Imprint Lithography for Biological Applications,” TRENDS in Biotechnology, Vol.24, No.7.
    32.N. Unno, H. Tamur, J. Taniguchi, “A technique for transferring metal nano patterns from a plastic replica mold by using a metal oxide release layer,” Microelectronic Engineering, vol.97, 2012, p.72-76.
    33.W. Zhou, J. Zhang, X. Li, Y. Liu, G. Min, Z. Song, and J. Zhang, 2009, “Replication of mold for UV-nanoimprint lithography using AAO membrane,”Applied Surface Science, vol. 255, p. 8019–8022.
    34.R. Muhammad, S.H. Cho, J.H. Lee, J.G. Park, 2013, “Fluorocarbon film-assisted fabrication of a CoNi mold with high aspect ratio for nanoimprint lithography,” Microelectronic Engineering, vol.104, p.58-63.
    35.C. H. Liu, C. K. Sung, E. C. Chang, C. Y. Lo, C. C. Fu, 2014, "Fabricating a Silver Soft Mold on a Flexible Substrate for Roll-to-Roll Nanoimprinting", IEEE Transactions on On Nanotechnology, Vol. 13, p. 80 - 84.
    36.X. Du, J. He, 2012, "Structurally colored surfaces with antireflective, self-cleaning, and antifogging properties," Journal of Colloid and Interface Science, Vol. 381, p.189-197.
    37.C. Xu, L. Wang, D. Li, S. Zhang, L. Chen, and D. Yang, 2013, "Improving the Solar Cell Module Performance by a Uniform Porous Antireflection Layer on Low Iron Solar Glass," Applied Physics Express, Vol. 6, 032301
    38.T. H. Chou, K. Y. Cheng, C. W. Hsieh, and Y. Takaya, 2012, "Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures," Journal of Micromechanics and Microengineering, Vol. 22, 045009.
    39.J. Zhao, Martin. A. Green, 1991, "A random access photodiode array for intelligent image capture," IEEE Transactions on Electron Devives, Vol. 38, p.1772- 1780.
    40.S. Chhajed, D.J. Poxson1, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, 2011, "Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,"Applied Physics Express, Vol. 4, 052503.
    41.S. S. Lo, C. C. Chen, F. Garwe, T. Pertch, 2007, "Broad-band anti-reflection coupler for a : Si thin-film solar cell ," Journal of Physics D: Applied Physics, Vol. 40, p. 754-758.
    42.Y. Liu, K. Du, I. Wathuthanthri, W. Xu, C. H. Choi, 2012, IEEE MEMS France , p.192.
    43.E. Hecht, Optics, Addison Wesley Longman Inc., 1998, 3rd Edition.
    44.P. Lalanne and G. M. Morris, 1996, “Design, fabrication and characterization of Subwavelength Periodic Structures for Semiconductor Anti-reflection Coating in the Visible Domain,” Proceedings of SPIE, Vol. 2776, p.300.
    45.L. Yang, Q. Feng, B. H. Ng, X. Luo, and M. H. Hong, 2010, "Hybrid Moth-Eye Structures for Enhanced Broadband Antireflection Characteristics," Applied Physics Express, Vol. 3, 102602.
    46.T. Yagi, Y. Uraoka, and T. Fuyuki, 2006, "Ray-trace simulation of light trapping in silicon solar cell with texture structures," Solar Energy Materials and Solar Cells, Vol. 90, p.2647-2656.
    47.J. C. Maxwell Garnett, 1904, "Colours in Metal Glasses and in Metallic Films," Philosophical Transactions of the Royal Society of London Series a, Vol. 203, p.385-420.
    48.Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, 1987, "Antireflection effect in ultrahigh spatial-frequency holographic relief gratings," Applied Optics, Vol. 26 , p.1142.1146.
    49.K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, 2012, "Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity," ACS nano, Vol.6, p.3789–3799.
    50.W. Barthlott, C. Neinhuis, 1997, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, Vol.202, p.1-8.
    51.D. Quéré, 2008, "Wetting and Roughness," Annual Review of Materials Research, Vol.38, p. 71-99.
    52.B. Bhushan, Y. C. Jung, K. Koch, 2009, "Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion," Philosophical Transactions of the Royal Society of London Series a, Vol.367, p.1631-1672.
    53.C. H. Liu, P. L. Niu, C. K. Sung, 2014, "Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrat," Journal of Physics D: Applied Physics, Vol.47, 015401.
    54.C. G. Bernhard, W. H. Miller, 1962, "A Corneal Nipple Pattern in Insect Compound Eyes,"Acta Physiologica Scandinavicam, Vol.56, p. 385-386.
    55.C. G. Bernhard, W. H. Miller, A. R. Moller, 1965, "Accommodation in Myelinated Nerve Fibres of Xenopus Laevis as Computed on the Basis of Voltage Clamp Data," Acta Physiologica Scandinavicam, Vol.63, p. 1-20.
    56.S. Y. Chou, P. R. Krauss, P. J. Renstrom, 1995,"Imprint of sub‐25 nm vias and trenches in polymers," Applied Physics Letters, Vol. 67, p.3114-3116.
    57.J. W. Coburn, H. F. Winters, 1979, "lasma etching—A discussion of mechanisms ,"Journal of Vacuum Science & Technology, Vol. 16, p.391-403.
    58.J. W. Leem, K. S. Chung, J. S. Yu, 2012, “Antireflective Properties of Disordered Si SWSs with Hydrophobic Surface by Thermally Dewetted Pt Nanomask Patterns for Si-based Solar Cells,” Current Applied Physics, Vol. 12, p. 291-298.
    59.J. Xiong, S. N. Das, B. Shin, J. P. Kar, J. H. Choi, J. M. Myoung, 2010, “Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties,” Journal of Colloid and Interface Science, Vol. 350, p.344-347.
    60.K. S. Han, H.Lee, D. Kim, H. Lee, 2009, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Solar Energy Materials & Solar Cells, Vol. 93, p.1214–1217.
    61.J.W. Leem, J.S. Yu, Y.M. Song, Y.T. Lee, 2011, “Antireflective characteristics of disordered GaAs subwavelength structures by thermallydewettedAunanoparticles,” Solar Energy Materials &Solar Cells, Vol.95, p.669-676.
    62.C. J. Ting, C. F. Chen, C. P. Chou, 2008, “Experimental Study of a Silver Layer on an Antireflection Subwavelength-Structured Surface,” IEEE Photonics Technology Letters, Vol.20, No. 13.
    63.Y.M. Hung, Y.J. Lu, C.K. Sung, 2009,"Microstructure patterning on glass substrate by imprinting process," Microelectronic Engineering, Vol. 86, p. 577-582.
    64.T.M. Liou, C. Y. Chan, K.C. Shih, 2010, " Effects of actuating waveform, ink property, and nozzle size on piezoelectrically driven inkjet droplets ," Microfluidics and Nanofluidics, Vol.8, p. 575-586.
    65.W. T. Pimbley, H. C. Lee, 1997, "Advanced DUV photolithography in a pilot lineenvironment ," IBM Journal of Research and Development, Vol. 21, p.21-37.
    66.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Wittan, 2000, " Contact line deposits in an evaporating drop," Physical Review E, Vol. 62, p.756-765.
    67.Z. Yu, P. Deshpande, W. Wu, J. Wang, S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters, vol.77, 2000, p.927-929
    68.J. G. Ok, H. S. Youn, M. K. Kwak, K. T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, Y. Liu, 2012, " Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters ," Applied Physics Letters, Vol. 101, 223102
    69.S.H. Ahn, L.J. Guo, 2008, "High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates," Advanced Materials, Vol. 20 ,p. 2044-2049.
    70.C. M. Chen, P. L. Niu, C. K. Sung, C. H. Chen, 2013, "Fabricating bi-layered metallic wire-grid polarizers by nanoimprint and O2 plasma etching," Microelectronic Engineering, Vol.102,p. 53-59.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE