研究生: |
顏宏昇 Yan, Hong-Sheng |
---|---|
論文名稱: |
液靜壓車床之精密切削測試與性能分析 Precision Cutting Test and Performance Estimate of Hydrostatic Lathes |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
蕭德瑛
Shaw, Dein 曹哲之 Tsao, Che-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 精密切削 、數值控制車床 、軸頸式液靜壓滑軌 |
外文關鍵詞: | Precision cutting, CNC lathe, Hydrostatic journal bearing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著加工技術越來越好,加工機也朝高精度發展,在保有加工精度的前提下,增加工具機工作時的穩定性及減低加工時所產生的振動,使得加工品質提升,是目前首要的發展趨勢。目前國內工具機在滑動軌道部分的設計大多採用傳統的滾珠滑軌,而國外已有廠商將工具機的線性移動軌道改用液靜壓滑軌。液靜壓滑軌相較於傳統滾珠滑軌有著幾乎無移動解析度與運作時僅會產生極小的振動等優點,本文將使用一配備液靜壓滑軌之車床進行切削實驗,並使用相同切削參數對比一配備線性滾珠滑軌車床進行分析。
為了更有系統的找出車床切削參數對於加工品質的影響,本研究將使用實驗設計法(Design of Experiments, DOE)中的全因子分析,針對主軸轉速、切削深度、進給量與工件材質,找出影響表面粗糙度最顯著的因子。研究結果發現使用液靜壓滑軌切削平台加工時的振動確實較滾珠滑軌來得小,驗證了液靜壓滑軌確實能夠減少振動,而量測加工完畢的工件表面粗糙度後,也可發現使用液靜壓滑軌的表面粗糙度優於滾珠滑軌。
藉由將液靜壓運用於電腦數值控制車床的切削測試,探討將液靜壓運用在工具機上的成效。希望藉此研究讓台灣工具機產業朝高精度的方向發展。
In recent years, with the machining technique better, the machining tools are also developing towards into high precision. In order to keep the machining accuracy, increase the stability of the machine tools and reduce the vibration generated during machining, let the machining quality improved is the current primary trend. In Taiwan, most of machine tools still use linear ball guideway as linear moving slides, moreover, there are some companies replaced the ball linear guideway to hydrostatics guideway in Europe and Japan. Compared to the linear ball guideway, hydrostatics has lots of advantage, such as scarcely moving resolution and only a little moving vibration while operating. This thesis will do the cutting test with the hydrostatics guideway applied on lathe and use same cutting parameters to compare with the lathe which is with linear ball guideway and analysis the surface accuracy of the work piece.
To find out the effect of cutting parameters for machining quality more systematic, this research will use full factor analysis in DOE method to find out spindle speed, depth of cut, feed rate, material, tool radius which is the most significant factor affecting surface roughness. By comparing the quality of workpiece of linear ball guideway and hydrostatic guideway, investigate the effectiveness of hydrostatic applied on the machine tools. This research hopes to make Taiwan’s machine tool industry develops into high precision.
[1] 台灣區工具機暨零組件工業同業公會(2020)。2020年1-9月工具機進出口分析。工具機零組件雜誌,125,46-54。檢自:TMBA
[2] R. Lizarralde, A. Azkarate and O, Zelaieta (2009). New Developments in Lathes and Turning Centres. In L. N. López de Lacalle, A. Lamikiz (Eds.). Machine Tools for High Performance Machining (chap. 7, pp. 261-278). London, UK: Springer-Verlag.
[3] 曾靖錡(2005)。多腔軸頸式液靜壓線性滑軌之分析。國立清華大學動力機械工程學系,新竹市。
[4] R. Bassani, B. Piccigallo (1992). Hydrostatic Lubrication (1st ed.). Netherlands: Elsevier Science.
[5] E. Abele, Y. Altintas, C. Brecher (2010). Machine tool spindle units. 59(2), 781-802.
[6] M. K. Ghosh, B. C. Majumdar (1980). Design of multirecess hydrostatic oil journal bearings. 13(2), 73-78.
[7] A. M. Loeb, H. C. Rippel (1959). Determination of optimum proportions for hydrostatic bearings. ASLE Transactions. 2(6), 241-249.
[8] Hembrug, A DANOBAT COMPANY. Mikroturn® 500XL. Retrieved from https://www.hembrug.com/machine/mikroturn-500-xl/
[9] 李承翰 (2006)。軸頸式液靜壓線性滑軌在工具機上的應用。國立清華大學動力機械工程學系,新竹市。
[10] Tojiro Aoyama (2019). Hydrostatic Bearing. In Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio (Eds.). CIRP Encyclopedia of Production Engineering (pp. 936-941). Berlin, DE: Springer.
[11] W. Brian Rowe (2013). Hydrostatic, Aerostatic, and Hybrid Bearing Design. Oxford, UK: Butterworth-Heinemann.
[12] Norio Taniguchi (1983). Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing. Annals of the CIRP. 32(2), 573-582.
[13] M. Hasegawa, A. Seireg, R. A. Lindberg (1976). Surface roughness model for turning. Tribology International. 285-289
[14] O. B. Abouelatta, J. Mádl (2001). Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. Journal of Materials Processing Technology. 118, 269-277.
[15] B. Sidda Reddy, G. Padmanabhan and K.Vijay Kumar Reddy (2008). Surface Roughness Prediction Techniques for CNC Turning. Asian Journal of Scientific Research. 1(3), 256-264.
[16] S. To, W.B. Lee, and C.Y. Chan (1997). Ultraprecision Diamond Turning of Aluminum Single Crystals. Journal of Materials Processing Technology. 63(1-3), 157-162.
[17] T. Sugano, K. Takeuchi, T. Goto, Y. Yoshida (1987). Diamond Turning of an Aluminum for Mirror. CIRP Annals, 36(1), 17-20.
[18] Chao Wang, Kai Cheng, Nico Nelson, Worapong Sawangsri and Richard Rakowski (2014). Cutting force-based analysis and correlative observations on the tool wear in diamond turning of single-crystal silicon. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(10), 1867-1873.
[19] 張鎔崴(2009)。工具機主軸系統結構分析與振動量測實務。國立虎尾科技大學機械與機電工程研究所,雲林縣。
[20] 馮健威(2008)。工具機之模態測試與性能改善。長庚大學機械工程研究所,桃園市。
[21] 張弘霖(2020)。液靜壓於傳統車床應用之系統整合設計及精密切削測試。國立清華大學動力機械工程學系,新竹市。
[22] Yidacnc, YDPM. YidaCNC奕達精機股份有限公司 HML-600. Retrieved from http://www.yidacnc.com/tw/about-8
[23] 億祥銅鋁有限公司. A6061材料性質. Retrieved from http://cu-al.com.tw/portfolio-posts/a6061-%E2%94%82-a6063/
[24] 炬鋒特殊鋼股份有限公司. 銅合金材料性質. Retrieved from https://www.jfs-steel.com/zh-TW/steelDetail/ASTM-C36000/ASTM-C36000-B16.html
[25] 昇茂金屬股份有限公司. SKD11產品介紹與材料性質. Retrieved from http://www.sheng-maw.com.tw/productshow.php?id=252
[26] Aguilar, A., Roman-Flores, A., & Huegel, J. C. (2013).Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill. Journal of Manufacturing Systems, 32(2), 364–371.
[27] Kuo-Ming Tsai, C.Y. Hsieh, Y.C. Chen, K.P. Tsao. (2013).Accuracy and Machining Performance of a Biaxial Hydrostatic Lathe. Journal of Technology, 28(4), 263-268.