簡易檢索 / 詳目顯示

研究生: 姚子柔
Yao, Tzu-Jou
論文名稱: 利用cation-π作用力及交聯作用提升膠原蛋白膜擬胜肽自組裝與不同位向cation-π作用力對三股螺旋穩定度之探討
Study of cation-π interactions and cross linking on the self-assembly of collagen-mimetic peptides and the orientation dependent of cation-π interactions on the stability of collagen triple helix
指導教授: 洪嘉呈
HORNG, JIA-CHERNG
口試委員: 江昀緯
CHIANG, YUN-WEI
杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 膠原蛋白陽離子-π 作用力水凝膠三股螺旋
外文關鍵詞: collagen, cation-π interaction, hydrogel, triple helix
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膠原蛋白是人體內含量最多的蛋白質,因具有高生物相容性、低細胞毒性等特色,常應用於生物相關領域,包括細胞修復、藥物傳輸等,其基本結構為第二型聚脯胺酸構形所形成之三股螺旋。穩定三股螺旋的作用力有很多種,包括氫鍵、靜電作用力、疏水作用力等;cation-π作用力即是由正電與芳香環系統所形成之非共價作用力,根據實驗室過去之研究,此作用力對膠原蛋白穩定度也有很大的貢獻。
    在第一部分中,參考過去研究之RG(POG)10F,希望能藉由增加頭尾cation-π作用力或置換賴胺酸與戊二醛進行交聯反應,幫助膠原蛋白模擬胜肽自組裝成大型結構,並進一步形成水凝膠。而實驗結果顯示,雖然cation-π作用力可以增加三股螺旋穩定度,但仍無法促使水凝膠之形成;而利用賴胺酸與戊二醛交聯雖有助於水凝膠的生成,但仍不足以形成穩定的水凝膠。
    在第二部分中,參考Hartgerink教授與Fei Xu教授之研究,想探討不同胺基酸組合以及不同位向之cation-π作用力對於三股螺旋穩定度的影響。根據實驗結果顯示,以胺基酸種類而言,精胺酸與苯丙胺酸及酪胺酸的cation-π作用力強度相似,而與色胺酸的作用力則較弱,與實驗室先前研究結果符合;以cation-π作用力位向而言,將三股螺旋N端朝上擺放,帶正電胺基酸位於上方,芳香環胺基酸位於下方之正向軸向作用力最大,其次為徑向作用力,最弱為芳香環胺基酸位於上方,正電胺基酸位於下方之負向軸向作用力。從實驗結果可看出,作用力的方向對於作用力的強弱有很大的影響,同樣的胺基酸若擺放的位置不同,產生的作用力也可能會有所差別,故設計胜肽時也須考慮此因素,希望此結果能幫助未來的研究進行。


    Collagen is the most abundant protein in human body. Since collagen has high biocompatibility and low cytotoxicity, it is often used in biological related fields, including cell repair, drug delivery. Collagen is a triple helix composed of three polyproline-II chains. Various forces can be used to stabilize the triple helix, including hydrogen bonds, electrostatic interactions, hydrophobic interactions. According to our pervious study, cation-π interaction, the noncovalent force between a positive charge and aromatic π-system, was also shown to play an important role in stabilizing collagen.
    In the first part, based on the peptide RG(POG)10F, we attempted to promote the collagen peptide self-assembly into large-scale structures and hydrogels by implanting multiple cation-π interactions or the interchain cross-linking via lysine-glutaraldehyde reactions. The results show that cation-π interactions can stabilize the triple helix and promote the self-assembly, but are not strong enough to assist the formation of hydrogels. Although the cross-linking can increase the forming propensity of hydrogels, the strength is not sufficient to form stable hydrogels.
    In the second part, according to previous studies, we explored the cation-π interactions of different cationic-aromatic pairs within the collagen triple helix, and investigated how the orientation of cation-π interactions affects collagen stability. The results show that the strength of the cation-π interaction between arginine and phenylalanine or tyrosine is similar, but the interaction between arginine and tryptophan is weaker, which is consistent with our previous results. Considering the orientation of the cation-π interaction, when the N-terminus of the triple helix is placed on top, and positively charged amino acid is located above the aromatic amino acid, this is assigned as the positive axial interaction. In contrast, the negative axial interaction is assigned when the aromatic amino acid is located above the positively charged amino acid. The strength of the positive axial interaction is greater than that of the lateral interaction, and the lateral interaction is stronger than the negative axial interaction. The results show that the orientation of the cation-π interaction has a large influence on its strength within the triple helix.

    中文摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 、緒論 1 1-1膠原蛋白簡介 1 1-1-1 膠原蛋白結構 1 1-1-2 脯胺酸 (Pro) 與羥脯胺酸 (Hyp) 穩定膠原蛋白的作用 3 1-1-3 膠原蛋白模擬胜肽置換單一胺基酸之穩定性 5 1-2 Cation-π作用力 (Cation-π interaction) 6 1-2-1蛋白質中常見的Cation-π作用力 7 1-2-2 Cation-π作用力與其他鍵的穩定性比較 9 1-2-3徑向 (lateral) 與軸向 (axial) 作用力 10 1-3水凝膠 (Hydrogel) 11 1-3-1 交聯作用 (Cross-linking) 11 1-3-2 蛋白質中常見之交聯試劑 (Cross-linker) 12 1-4 研究動機 14 第二章 、 實驗部分 15 2-1 實驗儀器 15 2-2 實驗藥品 16 2-3-1合成Boc-Hyp-OH 18 2-3-2 合成Boc-Hyp-Gly-OBn 19 2-3-3 合成Fmoc-Pro-Hyp-Gly-OBn 20 2-3-4 合成Fmoc-Pro-Hyp-Gly-OH 21 2-4 固相胜肽合成法 (Solid Phase Peptide Synthesis, SPPS)27 22 2-4-1 酯化反應 (Esterification)/醯胺化反應 (Amidation) 24 2-4-2 去保護 (Deprotection) 24 2-4-3 活化 (Activation) 25 2-4-4 耦合 (Coupling) 26 2-4-5 切除 (Cleavage) 26 2-5圓二色光譜儀 (Circular Dichroism Spectrometer, CD) 27 2-6 微量差式掃描量熱儀 (Differential Scanning Calorimetry, DSC) 29 2-7固相胜肽合成-膠原蛋白模擬胜肽鏈 30 2-7-1合成R3T4F3, R3T6F3 30 2-7-2合成 RG-K2-F, RG-K3-W 32 2-7-3合成(TRY)3, (TYR)3, (TRF)3, (TFR)3, (TRW)3, (TWR)3 33 2-7-4 利用高壓液相層析儀 (HPLC)進行純化 34 2-8 CD光譜量測 35 2-8-1 Far-UV CD光譜 35 2-8-2 變溫CD光譜量測 (Thermal denaturation) 35 2-8-3 變溫實驗數據處理 35 2-9 熱力學實驗 (DSC)樣品製備 37 2-9-1 熱力學實驗資料處理 37 2-10穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 37 2-10-1穿透式電子顯微鏡樣品配製 38 2-11 凝膠實驗樣品配製 38 第三章 、結果與討論 39 3-1 膠原蛋白模擬胜肽形成水凝膠 39 3-1-1 胜肽序列之設計 39 3-1-2 R3T4F3之探討 41 3-1-3 R3T6F3之探討 44 3-1-4 RG-K2-F之探討 46 3-1-5 RG-K3-W之探討 51 3-1-6 總結 54 3-2 徑向與軸向Cation-π作用力對膠原蛋白三股螺旋之影響 55 3-2-1 胜肽序列之設計 55 3-2-2 Far-UV CD 光譜 57 3-2-3 CD變溫實驗 57 3-2-4 DSC分析 61 3-2-5 穿透式電子顯微鏡影像 62 3-2-6 分子模擬與能量最小化分析 63 第四章 、結論 66 參考文獻 67 附錄 70

    1. Di Lullo, G. A.; Sweeney, S. M.; Körkkö, J.; Ala-Kokko, L.; San Antonio, J. D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 2002, 277, 4223-4231.
    2. Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B., Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 2009, 48, 7959-7968.
    3. Przybyla, D. E.; Chmielewski, J., Higher-order assembly of collagen peptides into nano- and microscale materials. Biochemistry 2010, 49, 4411-4419.
    4. Cowan, P. M.; McGavin, S.; North, A. C. T., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064.
    5. Moradi, M.; Babin, V.; Roland, C.; Sagui, C., A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J. Chem. Phys. 2010, 133, 125104.
    6. Bella, J., Collagen structure: New tricks from a very old dog. Biochem. J. 2016, 473, 1001-1025.
    7. Okuyama, K., Revisiting the molecular structure of collagen. Connect. Tissue Res. 2008, 49, 299-310.
    8. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958.
    9. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
    10. Dougherty, D. A., Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
    11. Kumpf, R.; Dougherty, D., A mechanism for ion selectivity in potassium channels: Computational studies of cation-pi interactions. Science 1993, 261, 1708-1710.
    12. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics:  Electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
    13. Caldwell, J. W.; Kollman, P. A., Cation-π interactions: nonadditive effects are critical in their accurate representation. J. Am. Chem. Soc. 1995, 117, 4177-4178.
    14. Gallivan, J. P.; Dougherty, D. A., Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 1999, 96, 9459-9464.
    15. https://en.wikipedia.org/wiki/Cation%E2%80%93pi_interaction (accessed on 7 June 2019).
    16. Brocchieri, L.; Karlin, S., Geometry of interplanar residue contacts in protein structures. Proc. Natl. Acad. Sci. USA 1994, 91, 9297-9301.
    17. Meot-Ner, M.; Deakyne, C. A., Unconventional ionic hydrogen bonds. 1. CHδ+···X. Complexes of quaternary ions with n- and π-donors. J. Am. Chem. Soc. 1985, 107, 469-474.
    18. Brodsky, B.; Persikov, A. V., Molecular structure of the collagen triple helix. In Advances in Protein Chemistry, Academic Press: 2005; Vol. 70, pp 301-339.
    19. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. USA 2018, 115, 6207-6212.
    20. Warren, D. S.; Sutherland, S. P. H.; Kao, J. Y.; Weal, G. R.; Mackay, S. M., The preparation and simple analysis of a clay nanoparticle composite hydrogel. J. Chem. Educ. 2017, 94, 1772-1779.
    21. Mellati, A.; Dai, S.; Bi, J.; Jin, B.; Zhang, H., A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv. 2014, 4, 63951-63961.
    22. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252-267.
    23. Farris, S.; Song, J.; Huang, Q., Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J. Agric. Food Chem. 2010, 58, 998-1003.
    24. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
    25. Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C., Self-assembly of short collagen-related peptides into fibrils via cation−π interactions. Biochemistry 2011, 50, 2381-2383.
    26. Jalan, A. A.; Demeler, B.; Hartgerink, J. D., Hydroxyproline-free single composition ABC collagen heterotrimer. J. Am. Chem. Soc. 2013, 135, 6014-6017.
    27. Merrifield, B., Solid phase synthesis. Science 1986, 232, 341-347.
    28. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876-2890.
    29. Institution., N. T. L. S., Instruments of science : An historical encyclopedia. 1998.
    30. Kodre KV, A. S., Yendhe PR, Patil RY, and Barge VU, Differential Scanning Calorimetry: A Review. RRJPA 2014, 3, 11-22.
    31. Olde Damink, L. H. H.; Dijkstra, P. J.; Van Luyn, M. J. A.; Van Wachem, P. B.; Nieuwenhuis, P.; Feijen, J., Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. - Mater. Med. 1995, 6, 460-472.

    QR CODE