研究生: |
劉耿偉 Liu, Keng-Wei |
---|---|
論文名稱: |
應用於穿透式電子顯微鏡之靜電式相位板的電荷累積研究 Studies of Charging in Application of Electrostatic Phase Plate in Transmission Electron Microscope |
指導教授: |
陳福榮
Chen, Fu-Rong 曾繁根 Tseng, Fan-Gang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 穿透式電子顯微鏡 、相位板 、電荷累積 |
外文關鍵詞: | Transmission electron microscope, Phase plate, Charging |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
由於弱相位物的低影像對比,造成生物試片或是輕元素材料試片不易在穿透式電子顯微鏡下觀察,雖然在傳統TEM下可藉著大量的離焦方法來提升影像對比,但會喪失解析度導致影像模糊,故發展靜電式相位板在保有解析度的情況下提升影像上的相位對比。我們的靜電式相位板是由Au/Si3N4/Au/Si3N4/Au五層所構成的單根懸臂樑結構,經由外加電壓的控制,將於相位板內部形成一均勻靜電場,並且改變穿透電子束π/2相位,進而提升影像上的對比。
在2006年,我們的靜電式相位板首先成功的分辨出SiONx與SiO2的介面,並且於2009年間再度提升了鐵蛋白的影像對比,但不論是薄膜式相位板或靜電式相位板,電荷累積皆是目前實驗上所遭遇到的最大問題。在本篇論文中,我們歸納出會導致靜電式相位板電荷累積的三個因素:二次電子的產生、電子束與Si3N4的作用以及汙染物的生成, 並針對這三種因素提出方法來一一改善,務求使電荷累積的問題不再產生。
[1] 鮑忠興,「近代穿透式電子顯微鏡實務」,滄海書局,2008
[2] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, 1996
[3] F. Zernike , Z. techn. Physik 16, (1935) 454-457
[4] Kuniaki Nagayama, Phil. Trans. R. Soc. B (2008) 363, 2153–2162
[5] R. Danev and K. Nagayama, Ultramicroscopy 88, (2001) 243
[6] Takao Matsumoto, Ultramicroscopy 63, (1996) 5-10
[7] F. Zernike, Physica 9(1942) 686-698, 974-986
[8] http://zh.wikipedia.org/zh-tw/%E9%98%BF%E5%93%88%E7%BD%97%E8%AF%BA%E5%A4%AB-%E7%8E%BB%E5%A7%86%E6%95%88%E5%BA%94
[9] Y. Aharonov, D. Bohm, Phys. Rev. , 115 (1959) 485
[10] Tonomura, A. “Electron holography”. New York :Springer-Verlag, second edition, 1999
[11] J. M. Cowley. “Diffraction Physics”. North Holland, Amsterdam, third revised edition, 1995
[12] Huang, S-H, “Studies in Electrostatic Phase Plate and Phase Contrast Transmission Electron Microscopy”, 2006
[13] Scherzer O, J Appl Phys 20, (1949) 20–29
[14] H. Boersch, Z. Naturforsch 2a, (1947) 615
[15] Takao Matsumoto et al., United States Patent, No. 5814815(1998)
[16] Huang,S-H., et al, J Electron Microsc 55(6) (2006). 273-280
[17] Jessie Shiue, Chia-Seng Chang, et al. J Electron Microsc 1–9 (2009)
[18] Danev R, et al. J Biol Phys 28,(2002) 627–635
[19] Radostin DANEV, et al. J Physical Society of Japan 73(10) (2004) 2718–2724
[20] Kuniaki Nagayama et al., United States Patent, No. 6674078(2004)
[21] Kuniaki Nagayama & Radostin Danev, Biophys Rev (2009) 1:37–42
[22] Kuniaki Nagayama, Patent, No. 1950789 (2008)
[23] R. R. Schröder, et al. Microsc Microanal 13, (2007) 136
[24] Tomio Endo, Japan Patent, No. 607048(1985)
[25] Kuniaki Nagayama., United States Patent Application Publication, No. 20080202918(2008)
[26] Kuniaki Nagayama., Eur Biophys J (2008) 37:345-358
[27] K. Schultheiß, et al. REVIEW OF SCIENTIFIC INSTRUMENTS 77, 033701 2006
[28] E. Majorovits, et al._ Ultramicroscopy 107, (2007) 213-226
[29] Rasmus Schroder et al., Germany Patent, No. 10206703(2003)
[30] Cambie, R., et al, Ultramicroscopy 107 (2007), 329-339
[31] Wang, Wan-Jhih., “The Fabrication of the Zernike Electrostatic Phase Plate and its application on the Phase TEM”, 2007
[32] P. R. Buseck, J. M. Cowley, and L. Eyring (1992) “High-Resolution Transmission Electron Microscopy and Associated Techniques”.
[33] Kuniaki Nagayama., “Comparison of Two Phase-Retrieval Methods in TEM : Interference with Phase Plates and Noninterference Base on TIE”, 2nd International Workshop on Noncrystallographic Phase Retrieval, PowerPoint, 2003
[34] R.F. Egerton, P. Li, M.Malac, Micron 35 (2004) 399-409