研究生: |
楊文鳳 Yang, Wen-Feng |
---|---|
論文名稱: |
Multicolor Fluorescence Labeling Technique for the Drosophila Brain: Flybow and Brainbow 果蠅腦多彩螢光標定技術—彩虹腦研究分析 |
指導教授: |
江安世
Chiang, Ann-Shyn |
口試委員: |
陳永昌
傅在峰 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 果蠅 、螢光蛋白 、影像技術 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在神經科學研究中,將個別的神經細胞結構明確的看清楚是研究生物體的行為以及神經網路之基礎的目標原則。在果蠅的生物系統中已經發展出非常多強而有力的基因轉殖工具,提供我們研究神經調控的知識。由啟動子Gal4啟動的上游活化續列UAS雙向系統在果蠅的基因轉殖的調控研究當中,是使用最廣泛的工具,但是通常以Gal4起始表現神經圖譜的訊號當中,由於過多的表達而導致我們很難有良好的限制表達訊號並且有太多的重疊,很難將個別的神經分別清楚來達成我們標定單一神經網路圖譜的首要目標。在這篇研究之中,我們使用”果蠅彩虹腦”和”彩虹腦”這些多種不同色彩的螢光標定技術,藉由Gal4/UAS系統的控制,使多種螢光蛋白隨機組合,表達在不同的單一細胞中,並且測試不同的熱休克時間之長短、次數及時間,找出最合適的熱休克條件來滿足我們的目標,也就是利用果蠅彩虹腦的技術賦予不同的單一細胞不同種螢光蛋白表達,借此區分複雜的果蠅腦神經網路圖譜中我們所需的標的神經細胞,並且比較這兩種基因工具的優缺點。我們之後的研究目標是利用這個更為快速方便的新技術來建構整隻果蠅的神經網路圖譜。
Clearly visualize individual neural structures is a basic principal goal for studying behaviors and underlying neural circuits of living creature in neuroscience. In Drosophila, there have been developed many powerful genetic tool for neural manipulation. Gal4-upstream activating sequence (UAS) system is the most widely used, but Gal4-driver expression patterns are often too widespread and overlap that rarely restrictive enough to map neural circuits. In this study, we use the multicolor fluorescence labeling technique called “Flybow” and “Brainbow” to create a stochastic expression of distinctive fluorescence proteins under Gal4/UAS binary system control. We tested different heat shock conditions to fulfill the most suitable circumstance for distinguish target neurons in the sophisticated Drosophila brain by expressing unequal XFPs, and compare these two genetic tools about their advantages and disadvantages. Our final goal is to achieve the faster neural circuitry map of brainwide connections in Drosophila.
Anderson, C.R., and Edwards, S.L. (1994). Intraperitoneal injections of Fluorogold reliably labels all sympathetic preganglionic neurons in the rat. J Neurosci Methods 53, 137-141.
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118,401–415.
Braitenberg, V. (1967). Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298.
Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. (2007). An optimized
transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc.
Natl. Acad. Sci. USA 104, 3312–3317.
Cajal, S.R. (1911). Histology of the nervous system of man and vertebrates(Oxford: Oxford University Press, Inc)., 1995 translation.
Cajal, S.R., and Sanchez, D. (1915). Contribucion al conocimiento de los centros nerviosos del los insectos. Trab. Lab. Invest. Biol 13, 1–167.
Callahan, C.A., Yoshikawa, S., and Thomas, J.B. (1998). Tracing axons. Curr Opin Neurobiol 8, 582-586.
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802-805.
Chiang AS., Lin CY., Chuang CC., Chang HM, Hsieh CH, Yeh CW. (2011). Curr Biol, 2011, 21, 1-11.
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).
Dymecki, S.M., and Kim, J.C. (2007). Molecular neuroanatomy’s ‘‘Three Gs’’: a primer. Neuron 54, 17–34.
Fischer, J.A., Giniger, E., Maniatis, T., and Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature 332, 853-856.
Gan, W.B., Grutzendler, J., Wong, W.T., Wong, R.O., and Lichtman, J.W. (2000). Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219-225.
Garcia-Otin, A.L., and Guillou, F. (2006). Mamm. Genome targeting using site-specific recombinases. Front. Biosci. 11, 1108–1136.
Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782.
Golic, K.G., and Lindquist, S. (1989). The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.
Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., and Heintz, N. (2003). A
gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925.
Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. (2001).
Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism
and applications. J. Biol. Chem. 276, 29188–29194.
Hadjieconomou D., Rotkopf S., Alexandre C., Bell D.M., Dickson B.J., and Salecker I. (2011). Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Method 10, 1567.
Heisenberg M., Wonneberger R., Wolf R.. (1978). Optomotor-blindH31—a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124,287–296.
Hengstenberg R. (1977). Spike responses of ’non-spiking’ visual interneurone. Nature 270, 338–340.
Heidmann, D. & Lehner, C.F. Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev. Genes Evol. 211, 458–465 (2001).
Hampel S., Chung P., McKellar C.E., Hall D., Looger L.L., and Simpson J.H. (2011).
Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature Method 10, 1566.
Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
Koenderink J.J., van Doorn A.J. (1987). Facts on optic flow. Biol Cybernetics 56, 247–254.
Lai, S.L., and Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9, 703-709.
Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
Luo L., Callaway E.M., and Svoboda K. (2008). Genetic Dissection of Neural Circuits. Neuron 57, 634-660.
Levis, R., Hazelrigg, T., and Rubin, G.M. (1985). Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558-561.
Liaw, C.W., Zamoyska, R. & Parnes, J.R. (1986). Structure, sequence, and polymorphism of the Lyt-2 T cell differentiation antigen gene. J. Immunol. 137, 1037–1043.
Lichtman, J.W., Livet, J., and Sanes, J.R. (2008). A technicolour approach to the connectome. Nat Rev Neurosci 9, 417-422.
Meinertzhagen, I.A. (1993). The synaptic populations of the fly’s optic neuropil and their dynamic regulation: Parallels with the vertebrate retina. Prog. Retinal Res. 12, 13–39.
Magrassi, L., Purves, D., and Lichtman, J.W. (1987). Fluorescent probes that stain living nerve terminals. J Neurosci 7, 1207-1214.
Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E., and Perrimon, N. (2008). Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40, 476-483.
Nagy, A. (2000). Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109.
Otsuna, H., and Ito, K. (2006). Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958.
Pierantoni R. (1976). A look into the cock-pit of the fly. The architecture of the lobular plate. Cell Tissue Res 171, 101–122.
Rockhill, R.L., Euler, T., and Masland, R.H. (2000). Spatial order within but not between types of retinal neurons. Proc. Natl. Acad. Sci. USA 97, 2303–2307.
Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. (2004). An improved cyan
fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449.
Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.
Single S., Borst A. (1998). Dendritic integration and its role in computing image velocity. Science 281,1848–1850.
Soohoo S.L., Bishop L.G. (1980). Intensity and motion responses of giant vertical neurons of the fly eye. J Neurobiol 11, 159–177.
Strausfeld N.J. (1976a). Atlas of an insect brain. Berlin: Springer-Verlag.
Strausfeld N.J. (1976b). Mosaic organizations, layers, and visual pathways in the insect brain. In: Zettler F, Weiler R, editors. Neural principles in vision. Berlin: Springer-Verlag. 245–279.
Siegal, M.L. & Hartl, D.L. (1996). Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726.
Sanes J.R., and Zipursky S.L. (2010). Design Principles of Insect and Vertebrate Visual Systems. Neuron 66, 15-36.
Shaner, N.C. et al. (2004). Improved monomeric red, orange and yellow fluorescent
1567–1572.
proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22,
Struhl, G., and Basler, K. (1993). Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.
Scott E.K., Raabe T., and Luo L. (2002). Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. The Journal of Comparative Neurology 454, 470–481.
Strausfeld, N.J., and Okamura, J.Y. (2007). Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J. Comp. Neurol. 500, 166–188.
Suster, M.L., Seugnet, L., Bate, M., and Sokolowski, M.B. (2004). Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancertrap. Genesis 39, 240–245.
Trujillo-Ceno´ z, O. (1965). Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res. 13, 1–33.
Vigier, P. (1909). Mcanisme de la synthse des impressions lumineuses recuillies par les yeux compos des Diptres. C.R. Acad. Sci 148, 1221–1223.
Wong, A.M., Wang, J.W., and Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229-241.
Wassle, H. (2004). Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757.
Yeh, E., Gustafson, K., and Boulianne, G.L. (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A 92, 7036-7040.
Yu, H.H., Chen, C.H., Shi, L., Huang, Y., and Lee, T. (2009). Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12, 947-953.
Zamoyska, R., Vollmer, A.C., Sizer, K.C., Liaw, C.W. & Parnes, J.R. (1985). Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA. Cell 43, 153–163.
Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.