研究生: |
江元郎 Yuan-Lang Chian |
---|---|
論文名稱: |
厭氧菌Desulfovibrio gigas的磷酸腺苷還原酵素所顯示可能的自我調控機制 Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas reveals a potential self-regulation mechanism |
指導教授: |
吳文桂
Wen-Guey Wu 陳俊榮 Chun-Jung Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | adenylylsulfate reductase 、APS reductase 、dissimilatory sulfate reduction |
外文關鍵詞: | adenylylsulfate reductase, APS reductase, dissimilatory sulfate reduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Adenylylsulfate reductase (APSR or APS reductase) plays a key role to catalyze APS to sulfite at the dissimilatory sulfate reduction. The 500-kDa APS reductase is isolated and purified directly from the D. gigas for crystallization. The alignment of APSR sequence from D. gigas and A. fulgidus exhibits a largest difference at C-terminal of β subunit. The overall structure of APS reductase consists of six αβ-heterodimers to form a hexamer structure. The α subunit shows no-covalent bonds with FAD, and two [4Fe-4S] clusters are enveloped by cluster-binding motifs. The difference of reduced potentials at two clusters is due to the number of polar interactions between the clusters and the protein matrixes. The entrance of substrates-binding channel on α subunit shows larger space comparing with the structure from A. fulgidus because of the shift of the loop (A326-A332) and the α helix (A289-A299) in the α subunit. The C-terminal of β subunit wraps around α-subunit to form a functional unit, and the loop of C-terminal of β subunit inserts into the active channel of α subunit from another αβ-heterodimer. The interactions between the substrate-binding residue (Arg-282) and the residues (Asp-159) on the C-terminal of β subunit affect binding of the substrate. The dynamic light scattering experiment shows the multiple forms of APS reductase changes from hexamer to dimmer after adding AMP. From structure of APSR and the feature of polymerization, the hypothetic model is suggested that APSR may self regulate the activity by the C-terminal of β subunit blocking active site.
Keywords: adenylylsulfate reductase, APS reductase, dissimilatory sulfate reduction
Reference
(1994). The CCP4 suite: programs for protein crystallography. In Acta crystallographica, pp. 760-763.
Barton, L.L. (1995). Sulfate-reducing bacteria, Vol 8 (New York, Plenum Press).
Bramlett, R.N., and Peck, H.D., Jr. (1975). Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris, pp. 2979-2986.
Brioukhanov, A.L., and Netrusov, A.I. (2004). Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry-Moscow+ 69, 949-962.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta crystallographica 54, 905-921.
Chen, K., Tilley, G.J., Sridhar, V., Prasad, G.S., Stout, C.D., Armstrong, F.A., and Burgess, B.K. (1999). Alteration of the reduction potential of the [4Fe-4S](2+/+) cluster of Azotobacter vinelandii ferredoxin I. The Journal of biological chemistry 274, 36479-36487.
D. R. kremer , M.v., G. Fauque , H. D. peck Jr. , J.Legall , J. Lampreia , J. J. G. Moura , and T. A. Hansen (1988). Immunocytochemical localization of APS reductase and bisulfite reductase in three desulfovibrio species. Archives of Microbiology 150, 296-301.
Denke, E., Merbitz-Zahradnik, T., Hatzfeld, O.M., Snyder, C.H., Link, T.A., and Trumpower, B.L. (1998). Alteration of the midpoint potential and catalytic activity of the rieske iron-sulfur protein by changes of amino acids forming hydrogen bonds to the iron-sulfur cluster. The Journal of biological chemistry 273, 9085-9093.
Fareleira, P., Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.V., and Santos, H. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology-Sgm 149, 1513-1522.
Fritz, G., Buchert, T., Huber, H., Stetter, K.O., and Kroneck, P.M.H. (2000). Adenylylsulfate reductases from archaea and bacteria are 1 : 1 alpha beta-heterodimeric iron-sulfur flavoenzymes - high similarity of molecular properties emphasizes their central role in sulfur metabolism. Febs Letters 473, 63-66.
Fritz, G., Buchert, T., and Kroneck, P.M.H. (2002a). The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases - Evidence for flavin-catalyzed reduction of adenosine 5 '-phosphosulfate. Journal of Biological Chemistry 277, 26066-26073.
Fritz, G., Einsle, O., Rudolf, M., Schiffer, A., and Kroneck, P.M.H. (2005). Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration. Journal of Molecular Microbiology and Biotechnology 10, 223-233.
Fritz, G., Roth, A., Schiffer, A., Buchert, T., Bourenkov, G., Bartunik, H.D., Huber, H., Stetter, K.O., Kroneck, P.M.H., and Ermler, U. (2002b). Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. P Natl Acad Sci USA 99, 1836-1841.
Gibson, G.R., Cummings, J.H., and Macfarlane, G.T. (1991). Growth and Activities of Sulfate-Reducing Bacteria in Gut Contents of Healthy-Subjects and Patients with Ulcerative-Colitis. Fems Microbiology Ecology 86, 103-111.
Glenda B. Michaels, J.T.D.a.H.D.P., Jr. (1970). A FLAVIN-SULFITE ADDUCT AS AN INTERMEDIATE IN REACTION CATALYZED BY ADENYLYL SULFATE REDUCTASE FROM DESULFOVIBRIO-VULGARIS. Biochemical and Biophysical Research Communications 39, 321-328.
Hamilton, W.A. (1998). Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9, 201-212.
Hammack, R.W., and Edenborn, H.M. (1992). The Removal of Nickel from Mine Waters Using Bacterial Sulfate Reduction. Applied Microbiology and Biotechnology 37, 674-678.
Haveman, S.A., Greene, E.A., Stilwell, C.P., Voordouw, J.K., and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite. Journal of bacteriology 186, 7944-7950.
Kopriva, S., and Koprivova, A. (2004). Plant adenosine 5 '-phosphosulphate reductase: the past, the present, and the future. Journal of Experimental Botany 55, 1775-1783.
Kuang, F., Wang, J., Yan, L., and Zhang, D. (2007). Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochimica Acta 52, 6084-6088.
Lampreia, J., Moura, I., Teixeira, M., Peck, H.D., Legall, J., Huynh, B.H., and Moura, J.J.G. (1990). The Active-Centers of Adenylylsulfate Reductase from Desulfovibrio-Gigas - Characterization and Spectroscopic Studies. Eur J Biochem 188, 653-664.
Lampreia, J., Pereira, A.S., and Moura, J.J.G. (1994). Adenylylsulfate Reductases from Sulfate-Reducing Bacteria. In Inorganic Microbial Sulfur Metabolism, pp. 241-260.
Le Gall, J. (1963). A New Species of Desulfovibrio. Journal of bacteriology 86, 1120.
Li, H.-T. (2007). Crystal Structure and Functional Study of the Bowman-Birk Inhibitor from Rice Bran in Complex with Bovine Trypsin. In institute of bioinformatics and structural biology, National Tsing Hua University (Hsin-Chu City, Taiwan).
Li, J., Nelson, M.R., Peng, C.Y., Bashford, D., and Noodleman, L. (1998). Incorporating protein environments in density functional theory: A self-consistent reaction field calculation of redox potentials of [2Fe2S] clusters in ferredoxin and phthalate dioxygenase reductase. Journal of Physical Chemistry A 102, 6311-6324.
Matias, P.M., Pereira, I.A., Soares, C.M., and Carrondo, M.A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89, 292-329.
Meyer, B., and Kuever, J. (2007a). Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology (Reading, England) 153, 3478-3498.
Meyer, B., and Kuever, J. (2007b). Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes--origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology (Reading, England) 153, 2026-2044.
Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular Crystallography, Pt A, pp. 307-326.
Peck, H.D., Jr., Deacon, T.E., and Davidson, J.T. (1965). Studies on Adenosine 5'-Phosphosulfate Reductase from Desulfovibrio Desulfuricans and Thiobacillus Thioparus. I. the Assay and Purification. Biochimica et biophysica acta 96, 429-446.
Pires, R.H., Venceslau, S.S., Morais, F., Teixeira, M., Xavier, A.V., and Pereira, I.A. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex--a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45, 249-262.
Pochart, P., Dore, J., Lemann, F., Goderel, I., and Rambaud, J.C. (1992). Interrelations between Populations of Methanogenic Archaea and Sulfate-Reducing Bacteria in the Human Colon. Fems Microbiology Letters 98, 225-228.
Schiffer, A., Fritz, G., Kroneck, P.M.H., and Ermler, U. (2006). Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5 '-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry 45, 2960-2967.
Traore, A.S., Hatchikian, C.E., Le Gall, J., and Belaich, J.P. (1982). Microcalorimetric studies of the growth of sulfate-reducing bacteria: comparison of the growth parameters of some Desulfovibrio species. Journal of bacteriology 149, 606-611.
Verhagen, M., Kooter, I.M., Wolbert, R.B.G., and Hagen, W.R. (1994). On the Iron-Sulfur Cluster of Adenosine Phosphosulfate Reductase from Desulfovibrio-Vulgaris (Hildenborough). Eur J Biochem 221, 831-837.