簡易檢索 / 詳目顯示

研究生: 陳彥芬
論文名稱: 一個超導模板模型解路徑之分歧問題探討
指導教授: 簡國清 博士
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 分歧點轉彎點隱函數定理切線猜測法割線猜測法牛頓迭代法虛擬弧長延拓法解路徑
外文關鍵詞: bifurcation point, turning point, implicit function theorem, tangent predictor, secant predictor, Newton’s iterative method,., pseudo-arclength continuation method, solution diagram
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討一個超導模板模型解路徑之分歧問題.
    首先,在隱函數定理的基礎下,計算出分歧點與轉彎點,再利用切線猜測法,割線猜測法,牛頓迭代法及虛擬弧長延拓法…等數值方法,討論其分歧現象及延拓出所有通過分歧點或轉彎點的解分支路徑.
    最後,藉由改變各種參數,觀察解路徑上分歧點及轉彎點的變化情形,並求得含有分歧點、轉彎點的解路徑與解分支圖,來探討解路徑圖上的分歧現象,以了解超導模板模型分歧問題的變化.


    The main purpose of this thesis is to investigate bifurcation problems of solution paths in a Superconducting Slab Model.
    First, apply the implicit function theorem to calculate the bifurcation points or turning points and then use the tangent predictor, secant predictor, Newton’s iterative method, and Pseudo- Arclength Continuation method and so on to discuss the bifurcation problems and get the solution paths, which passes through all of the bifurcation points or turning points of the solution branch paths.
    Finally, by changing the different parameters observe the variations of the bifurcation points and turning points of the solution and derive solution paths, and the solution branches diagram from the bifurcation points and turning points. Investigate the solution path diagram of the branch phenomenon to understand the bifurcation problems in a Superconducting Slab Model.

    第一章 緒論 1 第二章 分歧理論與虛擬弧長延拓法 3 2.1 分歧問題 3 2.2 隱函數定理與分歧理論 6 2.3局部延拓法 9 2.4 虛擬弧長延拓法 12 第三章 非線性常微分方程的分歧問題 14 3.1 分歧點的求法 14 3.2 分歧點解分支方向 25 3.2.1 Liapunov-schmidt降階法 25 3.2.2 選取解分支延拓方向 29 3.3 解分支延拓之數值計算 33 3.4 演算法 35 第四章 數值實驗 39 實驗(一) 40 實驗(二) 52 實驗(三) 72 實驗(四) 91 實驗(五) 99 第五章 結論 107 參考文獻 109

    [1] Aselone,P.M. and Moore,R.H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,1966.
    [2] Atkinson, K.E., The Numerical Solution of Bifurcation Problems,SIAMJ. Numer. Anal.,14(4), pp. 584-599, 1997.
    [3] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, 1970.
    [4] Brezzi, F., Rappaz, J.and Raviart, P.A., Finite Dimensional Approximation of a Bifurcation Problems, Numer. Math., 36, 1-25, 1980.
    [5] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
    [6] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York,1977.
    [7] G. Iooss and D. Joseph. Elementary stability and bifurcation theory, Springer Verlag, New York, 1980.
    [8] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell,1987.
    [9] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48,1972.
    [10] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press,1977.
    [11] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag,1987.
    [12] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel.1984.
    [13] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York.1983.
    [14] M. G. Grandal, An introduction to constructive aspects of bifurcation and the implicit function theorem in Applications of Bifurcation Theory, (T. H. Rabinowitz, Ed.) Academic, New York,1977
    [15] M. Kubicek and M. Marek, Evaluation of limit and bifurcation points for algebraic and nonlinear boundary value problems, Appl. Math. Comput.1979.
    [16] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17,1980.
    [17] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,1978.
    [18] Eusebius Doedel and Laurette S. Tuckerman, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems.,1999
    [19] 林慧芬,非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文, 2005.
    [20]雷晋干,馬應南,分歧問題的逼近理論與數值方法,1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE