簡易檢索 / 詳目顯示

研究生: 胡理策
論文名稱: Stability analysis for anisotropically expanding Bianchi typeⅠmodel
非均向膨脹宇宙 Bianchi typeⅠmodel的穩定性研究
指導教授: 江瑛貴
高文芳
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 48
中文關鍵詞: 均向膨脹宇宙穩定性
外文關鍵詞: bianchi type, Cosmic no-hair conjecture
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 宇宙無毛猜想推論均勻、均向的宇宙是必然的演化結果,亦即所有正宇宙常數的膨脹宇宙都會逐漸逼近均勻、均向的 de Sitter 時空。這個推論已經得到部分的證明和部份特例的支持。
    這篇論文將分析、探討一個特別的 Bianchi typeⅠ 模型,對宇宙無毛猜想所提供的支持與證明。論文中會加入曲率張量二次項到 Einstein-Hibert 作用量中,用以修正 Einstein 方程式,並推算 Bianchi typeⅠ 模型一組不均向解,和一組 de Sitter 解。最後再以微擾的穩定性分析方法,證明這個不均向解是不穩定的,由此證明這個 Bianchi typeⅠ 模型的演化結果,還是會符合宇宙無毛猜想的推論。


    Cosmic no-hair conjecture states that all expanding universe models with positive cosmological constant asymptotically approach the homogenous and isotropic de Sitter solution. This conjecture has been proved under certain energy conditions and has also been supported by a number of expanding solutions realized for a few known models.

    We will study the evolution of a homogeneous Bianchi typeⅠmodel which provides a supporting evidence of the comic no-hair conjecture. This model modifies the Einstein’s equation by the inclusion of quadratic curvature terms. Anisotropic solutions will be solved along with another de Sitter solution. The anisotropic solution can be shown to be unstable by a perturbation method. The result provides a positive supporting evidence for the comic no-hair conjecture.

    摘要 I Abstract II 致謝 III Index IV 1 Introduction 1 2 Modify Einstein’s equation 3 2.1 Einstein’s equation and principle of least action 3 2.2 Modify Einstein’s equation 8 3 Bianchi typeⅠ 13 3.1 The solution of Bianchi typeⅠ 13 3.1.1 The traditional way 13 3.1.2 Variation with ai 19 3.2 Energy conditions 24 3.3 Stability analysis 26 4 Conclusion and Future work 37 5 附錄 38 附錄1 38 附錄2 45 6 參考文獻 48

    [1] Sean Carroll, “Spacetime and Geometry: An Introduction to General Relativity”, Addison Wesley (2004)

    [2] Bernard F. Schutz, “A First Course in General Relativity”, Cambridge (1985)

    [3] Steven Weinberg, “Cosmology”, Oxford (2008)

    [4] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977)

    [5] R. Wald, Phys. Rev. D 28, 2118 (1983)

    [6] John D. Barrow and S. Hervik, Phys. Rev. D73, 023007 (2006)

    [7] W. F. Kao, Phys. Rev. D74, 043522 (2006)

    [8] W. F. Kao, Eur. Phys. J. C 53, 87-93 (2008)

    [9] W. F. Kao, Ing-Chen Linb, Stability Conditions for the Bianchi typeⅡ Anisotropically Inflating universes (2009)

    [10] 林英程, Stability Analysis of the Bianchi spaces, 清華大學物理所碩士論文 (2008)

    [11] John D. Barrow and S. Hervik, Phys. Rev. D74, 124017 (2006)

    [12] 柯勝藍, A Study on the Bianchi Ⅸ model universe, 交通大學物理所碩士論文 (2007)

    [13] 林君睿, The study of Bianchi TypeⅡ model, 交通大學物理所碩士論文 (2007)

    [14] 林勤倫, The study of Bianchi TypeⅥ cosmology mode, 交通大學物理所碩士論文 (2007)

    [15] 張家銘、林益弘、林英程、Tuan Quoc DO, private communication。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE