簡易檢索 / 詳目顯示

研究生: 張哲銘
Chang, Che-Ming
論文名稱: 矽化鈦奈米結構的成長與特性研究
Synthesis and Properties of the Titanium Silicide Nanostructures
指導教授: 陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 93
中文關鍵詞: 矽化鈦金屬矽化物奈米線奈米棒奈米網
外文關鍵詞: Titanium Silicide, Metal Silicide, Nanowire, Nanobat, Network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維結構奈米材料如奈米線、奈米管、奈米帶由於具有特殊的光學、電子及機械性質因此近年來受到大家廣泛的重視。本研究以合成新穎的矽化鈦奈米結構材料為主題,並針對合成出的奈米結構進行分析鑑定與成長機制的探討,同時量測矽化鈦奈米材料獨特的性質。
    本研究利用化學氣相反應的方式來成長矽化鈦奈米結構。當鈦金屬基板溫度控制在900 ℃時,可在鈦金屬片上生成Ti5Si4棒狀結構,且針對Ti5Si4奈米棒的場發性質及電性進行量測。當鈦金屬基板溫度在800 ℃的情況下,可以成長出Ti5Si4二維奈米網狀結構。利用穿透式電子顯微鏡細部分析網狀結構,發現它的成長方向是沿著[100]及[010]兩個相同晶格常數的對稱軸進行成長。在不同成長時間下觀察,推測二維奈米網狀結構是由分枝狀的奈米線逐漸成長所形成的。
    金屬鹵化物近幾年常被利用在成長矽化物奈米結構上,由於它相較於一般的金屬粉末具有低熔點、高活性及輕微蝕刻等特性,因此可以降低反應時的溫度及簡化製程設備。本研究利用氟化鈦粉末(TiF4)做為前驅物,在矽基板上成長C54-TiSi2奈米線,並針對它的電性與場發性質進行量測。反應初期會先在矽基板上先形成一層C54-TiSi2薄膜,進而在薄膜上方再生成奈米線。


    One dimensional nanostructures such as nanowires, nanotubes, nanobelts have been extensively studied because of the peculiar optical, electrical and mechanical properties. In the present research, we synthesized the novel titanium silicide nanostructures, identified the structures and elucidated the growth mechanisms. In addition, the unique properties of the nanostructures were investigated.
    A vapor transport and condensation method was used to grow the titanium silicide nanostructures. Ti5Si4 nanobats grew on the titanium substrate at 900 ℃. The electrical transport and field emission properties of the nanobats were measured. Two-dimensional (2D) Ti5Si4 network structures were fabricated on the titanium substrate at 800 ℃. The growth directions of the network are along the two equivalent symmetric axes [100] and [010] with the same lattice constant. The 2D network structures were likely developed from the branched nanowires.
    Titanium tetrafluoride (TiF4) precursor was utilized to synthesize the C54-TiSi2 nanowires on the silicon substrate. The C54-TiSi2 thin film was formed on the silicon substrate as the seed layer. The C54-TiSi2 nanowires then grew above the seed layer with a thickness of 1 µm on the silicon substrate. The electrical transport and field emission properties of the nanowires were investigated.

    Contents I Acknowledgments Ⅳ List of Acronyms and Abbreviations V Abstract VII Chapter 1. Introduction 1.1 Nanotechnology 1 1.2 Nanostructures 4 1.2.1 One-Dimensional (1D) Nanostructures 4 1.2.2 Synthesis Methods of One Dimensional Nanostructure and Growth Mechanism 5 1.2.2.1 Vapor-Liquid-Solid Growth Mechanism 6 1.2.2.2 Vapor-Solid Growth Mechanism 7 1.2.2.3 Oxide-Assisted Growth Mechanism 8 1.2.2.4 Solution-Liquid-Solid Growth Mechanism 10 1.3 Applications of Metal Silicides in ULSI 11 1.4 Properties of Metal Silicides 12 1.5 Titanium Silicide Nanostructures 14 1.5.1 Titanium Silicide Thin Films 14 1.5.2 Titanium Silicide Nanowires 17 1.5.3 Titanium Silicide Nets and Complex Nanostructures 18 Chapter 2. Experimental Procedures 2.1 The Growth of Ti5Si4 Nanobats 20 2.2 The Growth of Ti5Si4 Two-Dimensional Networks 21 2.3 The Growth of TiSi2 Nanowires 22 2.4 Scanning Electron Microscope (SEM) Observation 23 2.5 Preparation of Samples for Transmission Electron Microscope (TEM) Observation 23 2.6 Transmission Electron Microscope Observation 24 2.7 Energy Dispersive Spectrometer (EDS) Analysis 24 2.8 X-ray Diffraction (XRD) Analysis 25 2.9 Photo-electron Spectroscope Measurement 25 2.10 Field Emission Measurement 25 2.11 Electron Transport Properties Measurement 26 Chapter 3. Ti5Si4 Nanobats with Excellent Field Emission Properties 3.1 Introduction 27 3.2 Experimental Procedures 29 3.3 Results and Discussion 31 Chapter 4. Spontaneous Growth of Two-Dimensional Single Crystal Ti5Si4 Network Structure 4.1 Introduction 41 4.2 Experimental Procedures 43 4.3 Results and Discussion 45 Chapter 5. Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor 5.1 Introduction 52 5.2 Experimental Procedures 54 5.3 Results and Discussion 56 Chapter 6. Summary and Conclusions 6.1 Ti5Si4 Nanobats with Excellent Field Emission Properties 68 6.2 Spontaneous Growth of Two-Dimensional Single Crystal Ti5Si4 Network Structure 69 6.3 Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor 70 Chapter 7. Future Prospects 7.1 The Piezoelectric Properties of the Ti5Si4 Nanowires 72 7.2 Application of the TiO2 Coated TiSi2 Nanowires in Solar Cell 73 References 74

    1.1 Taniguchi, N., “On the basic concept of nanotechnology,” Proc. Intl. Conf. Prod, PartⅡ, 1974, 18-23.
    1.2 Drexler, K. E., “Engines of Creation: The Coming Era of Nanotechnology,” Doubleday, London, 1986.
    1.3 Hah, J. H.; Mayya, S.; Hata, M.; Jang, Y. K.; Kim, H. W.; Ryoo, M.; Woo, S. G.; Cho, H. K.; Moon, J. T., “Converging lithography by combination of electrostatic layerby layer self-assembly and 193 nm photolithography: top-down meets botton-up,” J. Vac. Sci. Technol. B. 2006, 24, 2209-2213.
    1.4 Alivisatos, P., “Semiconductor clusters, nanocrystals and quantum dots,” Science 1999, 271, 933-934.
    1.5 Krans, J. M.; Rutenbeek, J. M. V.; Jongh, L. J. D., “The signature of conductance quantization in metallic point contacts,” Nature 1995, 375, 767-768
    1.6 Leobandung, E.; Guo, L.; Wang, Y.; Chou, S. Y., “Observation of quantum effects and coulomb blockade in silicon quantum dot transistors at temperature over 100K,” Appl. Phys. Lett. 1995, 67, 938-940.
    1.7 Markovich, G.; Collier, C. P.; Heath, J. R., “Architectonic quantum dot solids,” Acc. Chem. Res. 1999, 32, 415-423.
    1.8 Lubick, N.; Betts, K., “Silver socks have cloudy lining,” Environ. Sci. Technol. 2008, 42, 3910-3911.
    1.9 Buzea, C.; Pacheco, I. I.; Robbie, K., “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphasese 2007, 2, MR17-MR71.
    1.10 Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smithn, D. C.; Lieber, C. M., “Growth of nanowires superlattice structures for nanoscale and electronics,” Nature 2002, 415, 617-620.
    1.11 Iijima, S., “Helical microtube of graphitic carbon,” Nature 1991, 354, 56-58.
    1.12 Tans, S. J.; Verschueren, R. M.; Dekker, C., “Room temperature transistor based on a single carbon nanotube,” Nature 1998, 393, 49-52.
    1.13 Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C., “Carbon nanotube intramolecular junctions,” Nature 1999, 402, 273-276.
    1.14 Derycke, V.; Martel, R.; Appenzaller, J.; Avouis, P., “Carbon nanotube inter and intramolecular logic gates,” Nano Lett. 2001, 1, 453-456.
    1.15 Duan, X.; Chi, Y.; Wang, J.; Liber, C. M., “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 2001, 409, 66-69.
    1.16 Wang, Z. L., “Nanowires and nanobelts materials, properties and devices, metal and semiconductor nanowires, vol. I,” Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.
    1.17 Wagner, R. S.; Ellis, W. C., “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 1964, 4, 89-90.
    1.18 Yang, Y. H.; Wang, C. X.; Wang, B.; Xu, N. S.; Yang, G. W., “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement,” Chem. Phys. Lett. 2005, 403, 248-251.
    1.19 Johnson, M. C.; Lee, C. J.; Bourret-Courchesne, E. D.; Konsek, S. L.; Aloni, S.; Han, W. Q.; Zettl, A., “Growth and morphology of 0.80 eV photoemitting indium nitride nanowires,” Appl. Phys. Lett. 2004, 85, 5670-5672.
    1.20 Lee, K. H.; Lee, S. W.; Vanfleet, R. R.; Sigmund, W., “Amorphous silica nanowires grown by the vapor-solid mechanism,” Chem. Phys. Lett. 2003, 376, 498-503.
    1.21 Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T., “Nucleation and growth of Si nanowires from silicon oxide,” Phys. Rev. B 1998, 58, R16024-R16026.
    1.22 Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth,” Science 1995, 270, 1791-1794.
    1.23 Moissan, H., “The electric furnace,” Edward Arnold, London, 1904.
    1.24 Maex, K., “Silicides for Integrated Circuits: TiSi2 and CoSi2,” Mater. Sci. Eng. 1993, R11, 53-153.
    1.25 Lin, J. F;. Bird, J. P.; He, Z.; Bennet, P. A.; Smith, D. J., “Signatures of quantum transport in self-assembled epitaxial nickel silicide nanowires,” Appl. Phys. Lett. 2004, 85, 281-283.
    1.26 Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; Chen, L. J.; Tsai, C. J., “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Lett. 2005, 87, 223113-223115.
    1.27 Decker, C. A.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R., “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 2004, 84, 1389-1391.
    1.28 Chen, S. Y.; Chen, L. J., “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on Si(001),” Appl. Phys. Lett. 2005, 87, 253111-253113.
    1.29 Stevens, M.; He, Z.; Smith, D. J.; Bennet, P. S., “Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction,” J. Appl. Phys. 2003, 93, 5670-5674.
    1.30 Nogami, J.; Liu, B. Z.; Katkov, M. V.; Ohbuchi, C.; Birge, N. O., “Self-assemibled rare-earth silicide nanowires on Si(100),” Phys. Rev. B 2001, 63, 233305-233308.
    1.31 Chen, Y.; Ohlberg, D. A.; Medeiros-Ribeiro, G.; Chang, A.; Williams, R. S., “Self-assembled growth of epitaxial erbium disilicide nanowires on silicon(001),” Appl. Phys. Lett. 2000, 76, 4004-4006.
    1.32 Preinesberger, C.; Becker, S. K.; Vandre, S.; Kalka, T.; Dahne, M., “Structure of DySi2 nanowires on Si(001),” J. Appl. Phys. 2002, 91, 1695-1697.
    1.33 Jeon, H.; Sukow, C. A.; Honeycutt, J. W.; Rozgonyi, G. A.; Nemanich, R. J., “Morphology and phase stability of TiSi2 on Si,” J. Appl. Phys. 1992, 71, 4269-4276.
    1.34 Baklanov, M. R.; Vanhaelemeersch, S.; Storm, W.; Kim, Y. B.; Vandervorst, W.; Maex, K., “Surface process occurring on TiSi2 and CoSi2 in fluorine-based plasmas reactive ion etching in CF4/CHF3 plasma,” J. Vac. Sci. Technol. A 1997, 15, 3005-3014.
    1.35 Datta, M. K.; Pabi, S. K.; Murty, B. S., “Phase fields of nickel silicides obtained by mechanical alloying in the nanocrstalline state,” J. Appl. Phys. 2000, 87, 8393-8400.
    1.36 Crofton, J.; Mcmullin, P. G.; Williams, J. R.; Bozack, M. J., “High-temperature ohmic contact to n-type 6H-SiC using nickel,” J. Appl. Phys. 1995, 77, 1317-1319.
    1.37 Datta, M. K.; Pabi, S. K.; Murty, B. S., “Thermal stability of nanocrystalline Ni silicides synthesized by mechanical alloying,” Mater. Sci. Eng. 2000, A284, 219-225.
    1.38 Majni, G.; Costato, M.; Panini, F., “The growth processes of thin film silicides in Si/Ni planar systems,” Thin Solid Films 1985, 125, 71-78.
    1.39 Morimoto, T.; Momose, H. S.; Iinuma, T.; Kunishima, I.; Suguro, K.; Okano, H.; Katakabe, I.; Nakajima, H.; Tsuchiaki, M.; Ono, M.; Katsumata, Y.; Iwai, H., “A NiSi salicide technology for advanced logic devices,” IEDM Tech. Dig. 1991,653-656.
    1.40 Ohguro, T.; Nakamura, S; Koike, M.; Morimoto, T.; Nishiyama, A.; Ushiku, Y.; Yoshitomi, T.; Ono, M.; Saito, M.; Iwai, H., “Analysis of resistance behavior in Ti-salicide and Ni-salicided polysilicon films,” IEEE Trans. Electron Devices 1994, 41, 2305-2317.
    1.41 Ma, Z; Allen, L. H., “Silicide technology for integrated circuits,” edited by Chen, L. J. IEE, London. 2004, 49-76.
    1.42 Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., “Binary alloy phase diagrams,” ASM International, Materials Park, Ohio, 1990.
    1.43 Wang, M. H.; Chen, L. J., “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin film on Si (111),” J. Appl. Phys. 1992, 71, 5918-5925.
    1.44 Loenen, E. J. V.; Fischer, A. E. M. J.; Veen, J. F. V. D., “Ti-Si mixing at room temperature: a high resolution ion backscattering study,” Surf. Sci. 1985, 155, 65-78.
    1.45 Chen, L. J., “Solid state amorphization in metal/Si system,” Mater. Sci. Eng. R 2000, 29, 115-152.
    1.46 Lur, W.; Chen, L. J., “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti Thin film and single crystal silicon,” Appl. Phys. Lett. 1989, 54, 1217-1219.
    1.47 Jeon, H.; Sukow, C. A.; Honeycutt, J. W.; Rozgoni, G. A.; Nematich, R. J., “Morphology and phase stability of TiSi2 on Si,” J. Appl. Phys. 1992, 71, 4269-4276.
    1.48 Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P., “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 2005, 86, 243103-243105.
    1.49 Fowler, R. H.; Nordheim, L. W., “Electron emission in intense field,” Pro. R. Soc. 1928, A229, 173-181.
    1.50 Zou, C.; Zhang, X.; Jing, G.; Zhang, J.; Liao, Z.; Yu, D. P., “Synthesis and electrical properties of TiSi2 nanocables,” Appl. Phys. Lett. 2008, 92, 253102-253104.
    1.51 Hsu, H. C.; Wu, W. W.; Hsu, H. F.; Chen, L. J., “Growth of high density titanium silicdide nanowires in a single dierection on a silicon surface,” Nano Lett. 2007, 7, 885-889.
    1.52 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Spontaneous growth of highly conductive two-dimensional single crystalline TiSi2 nanonets,” Angew. Chem. Int. Ed. 2008, 47, 7681-7684.
    1.53 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Rational synthesis and structural characterization of complex TiSi2 nanostructures,” Chem. Mater. 2009, 21, 1023-1027.
    1.54 Lin, Y.; Zhou, S.; Liu, X.; Sheehan, S.; Wang, D., “TiO/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting,” J. Am. Chem. Soc. 2009, 131, 2772-2773.

    Chapter 3
    3.1 Dong, L.; Bush, J.; Chirayos, V.; Solanki, R.; Jiao, J.; Ono, Y.; Conley, J. F.; Ulrich, B. D., “Dielectrophoretically controlled fabrication of single crystal nickel silicide nanowire interconnects,” Nano Lett. 2005, 5, 2112-2115.
    3.2 Decker, C. A.; Solanki, R.; Freeouf, L. J.; Carruthers, J. R.; Evans, D. R., “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 2004, 84,1389-1391.
    3.3 Okino, H.; Matsuda, I.; Hobara, R.; Hosomura, Y.; Hasegawa S.; Bennett, P. A., “In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110),” Appl. Phys Lett. 2005, 86, 233108-236110.
    3.4 Ouyang, L.; Thrall, E. S.; Deshmukh M. M.; Park, H., “Vapor phase synthesis and characterization of ε-FeSi nanowires,” Adv. Mater. 2006, 18, 1437-1440.
    3.5 Schmitt, A. L.; Bierman, M. J.; Schmeisser, D.; Himpsel, F. J.; Jin, S., “Synthesis and properties of single crystal FeSi nanowires,” Nano Lett. 2006 , 6, 1617-1621.
    3.6 Wang, Q.; Luo, Q.; Gu, C. Z., “Nickel silicide nanowires formed in pre patterned SiO2 trench and their electrical transport properties,” Nanotechnology 2007, 18, 195304-195308
    3.7 Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A.; O’Brien, J. R.; Taylor, B., “Magnetic iron silicide nanowires on Si(110),” Appl. Phys. Lett. 2006, 88, 113111-113113.
    3.8 Magen, C.; Ritter, C.; Morellon, L.; Algarable, P. A.; Ibarra, M. R.; Tsokol, A. O.; Gschneidner, K. A.; Pecharsky, V. K., “Magnetic field induced structural transformation in Er5Si4,” Phy. Rev. B. 2006, 74, 174413-174420.
    3.9 Kim, J.; Anderson, W. A., “Direct electrical measurement of the self-assembled nickel silicide nanowire,” Nano Lett. 2006, 6, 1356-1359.
    3.10 Chen, L. J., “The key building block for future electronic devices,” J. Mater. Chem. 2007, 17, 4639-4643.
    3.11 Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J.; Chen, L. J.; Tu, K. N.; Huang, Y., “Single crystalline PtSi nanowires PtSi/Si/PtSi nanowire heterostructures and nanodevices,” Nano Lett. 2008, 8, 913-918.
    3.12 Chen, L. J., “Metal silicide: An integral part of microelectronics,” JOM 2005, 57 (9), 24-30.
    3.13 Hsu, H. C.; Wu, W. W.; Hsu, H. F.; Chen, L. J., “Growth of high density titanium silicdide nanowires in a single dierection on a silicon surface,” Nano Lett. 2007, 7, 885-889.
    3.14 Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N., “In-situ control of atomic scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction,” Nano Lett. 2007, 7, 2389-2394.
    3.15 Chou, Y. C.; Wu, W. W.; Cheng, S. L.; Yoo, B. Y.; Muyn, N.; Chen, L. J.; Tu, K. N., “In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si,” Nano Lett. 2008, 8, 2194-2199.
    3.16 Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P., “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 2005, 86, 243103-243105.
    3.17 Chen, L. J., “Solid state amorphization in metal/Si systems,” J. Mater. Sci. R 2000, 29, 115-152.
    3.18 Kematick, R. J.; Myers, C. E., “Thermodynamics of the phase formation of the titanium silicides,” Chem. Mater. 1996, 8, 287-291.
    3.19 Wang, M. H.; Chen, L. J., “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin film on Si (111),” J. Appl. Phys. 1992, 71, 5918-5925.
    3.20 Wang, M. H.; Chen, L. J., “Simultaneous occurrence of multiphases in interfacial reactions of ultrahigh vacuum deposited Ti thin films on Si (111),” Appl. Phys. Lett. 1991, 59, 2460-2462.
    3.21 Wang, J. H.; Yang, T. H.; Wu, W. W.; Chen, L. J.; Chen, C. H.; Chu, C. J., “Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics,” Nanotechnology 2006,17, 719-722.
    3.22 Du, J.; Du, P.; Hao, P.; Huang, Y.; Ren, Z.; Han, G.; Weng W.; Zhao, G.., “Growth mechanism of TiSi nanopins on Ti5Si3 by atmospheric pressure chemical vapor deposition,” J. Phys. Chem. C. 2007, 111, 10814-10817.
    3.23 Araki, H.; Katayama, T.; Yoshino, K., “Field emission from aligned carbon nanotubes prepared by thermal chemical vapor deposition of Fe-phthalocyanine,” Appl. Phys. Lett. 2001, 79, 2636-2638.
    3.24 He, J. H.; Wu, T. H.; Hsin, C. L.; Li, K. M.; Che, L. J.; Chuen, Y. L.; Chou, L. J.; Wang, Z. L., “Beaklike SnO2 nanorods with strong photoluminescent and field emission properties,” Small. 2006, 1, 116-120.
    3.25 He, J. H.; Yang, R.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L., “Aligned AlN nanorods with multi-tipped surface, growth, field emission and cathodoluminescence properties,” Adv. Mater. 2006, 18, 650-654.
    3.26 Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; He, J. H.; Wu, W. W.; Chen, L. J., “Synthesis of taperlike Si nanowires with strong field emission,” Appl Phys. Lett. 2005, 86, 133112-133114.
    3.27 Ok, Y. W.; Seong, T. Y.; Choi, C. J.; Tu, K. N., “Field emission from Ni disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl Phys Lett. 2006, 88, 43106-43108.
    3.28 Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; Chen, L. J.; Tsai, C. J.; Hsu, C. M.; Kung, S. C., “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Lett. 2005, 87, 223113-223115.
    3.29 Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., “TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett. 2006, 6, 1637-1644.
    3.30 Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T., “Ti5Si3 nanowire and its field emission property,” Chem. Mater. 2008, 20, 2429-2431.
    3.31 Lee, C. Y.; Lu, M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J., “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties,” Appl. Phys. Lett. 2008, 93, 113109-113111.
    3.32 Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J., “Free-standing single crystal NiSi nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C. 2009, 113, 2286-2289.
    Chapter 4
    4.1 Suyatin, D. B.; Sun, J.; Fuhrer, A.; Wallin, D.; Froberg, L. E.; Karlsson, L. S.; Maximov, I; Wallenberg, L. R; Samuelson; L.; Xu. H. Q., “Electrical properties of self-assembled branched InAs nanowire junctions,” Nano Lett. 2008, 8, 1100-1104.
    4.2 Dick, K. A.; Deppert, K.; Karlsson, L. S.; Seifert, W.; Wallenberg, L. R.; Samuelson, L., “Position-controlled interconnected InAs nanowire networks,” Nano Lett. 2006, 6, 2842-2847.
    4.3 Zhu, J.; Peng, H.; Chan, C. K.; Jarausch, K.; Zhang, X. F.; Chi. Y., “Hyperbranched lead selenide nanowire networks,” Nano Lett. 2007, 7, 1095-1099.
    4.4 Bierman, M. J.; Lau, Y. K. A; Jin, S., “Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis,” Nano Lett. 2007, 7, 2907-2912.
    4.5 Zhao, Y. M.; Li, Y. H.; Ahmad, I.; McChartney, D. G.; Zhu, Y. Q.; Hu, W. B., “Two-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett. 2006, 89, 133116-133118.
    4.6 Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L., “Three-dimensional tungsten oxide nanowire networks,” Adv. Mater. 2005, 17, 2107-2110.
    4.7 Pozoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L., “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett. 2006, 88, 203101-203103.
    4.8 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Rational synthesis and structural characterization of complex TiSi2 nanostructures,” Chem. Mater. 2009, 21, 1023-1027.
    4.9 Lin, Y.; Zhou, S.; Liu, X.; Sheehan, S.; Wang, D., “TiO/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting,” J. Am. Chem. Soc. 2009, 131, 2772-2773.
    4.10 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Spontaneous growth of highly conductive two-dimensional single crystalline TiSi2 nanonets,” Angew. Chem. Int. Ed. 2008, 47, 7681-7684.
    4.11 Kematick, R. J.; Myers, C. E., “Thermodynamics of the phase formation of the titanium silicides,” Chem. Mater. 1996, 8, 287-291.

    Chapter 5
    5.1 Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; Kreupl, F., “Silicon nanowire transistors with intruded nickel silicide contacts,” Nano Lett. 2006, 6, 2660-2666.
    5.2 Dong, L.; Bush, J.; Chirayos, V.; Solanki, R.; Jiao, J.; Ono, Y.; Conley, J. F.; Ulrich, B. D., “Dielectrophoretically controlled fabrication of single crystal nickel silicide nanowire interconnects,” Nano Lett. 2005, 5, 2112-2115.
    5.3 Kim, J.; Anderson, W. A., “Direct electrical measurement of the self-assembled nickel silicide nanowire,” Nano Lett. 2006, 6, 1356-1359.
    5.4 Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J.; Chen, L. J.; Tu, K. N.; Huang, Y., “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures and nanodevices,” Nano. Lett. 2008, 8, 913-918.
    5.5 Hsu, H. C.; Wu, W. W.; Hsu. H. F.; Chen, L. J., “Growth of high density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett. 2007, 7, 885-889.
    5.6 Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N., “In situ control of atomic scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction,” Nano Lett. 2007, 7, 2389-2394.
    5.7 Chou, Y. J.; Wu, W. W.; Cheng, S. L.; Yoo, B. Y.; Myung, N.; Chen, L. J.; Tu, K. N., “In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si,” Nano Lett. 2008, 8, 2194-2199.
    5.8 Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P., “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 2005, 86, 243103-243105.
    5.9 Chen, L. J., “Metal silicide: An integral part of microelectronics,” JOM 2005, 57(9), 24-30.
    5.10 Zou, C.; Zhang, X.; Jing, G.; Zhang, J.; Liao, Z.; Yu, D. P., “Synthesis and electrical properties of TiSi2 nanocables,” Appl. Phys. Lett. 2008, 92, 253102-253104.
    5.11 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Spontaneous growth of highly conductive two-dimensional single crystalline TiSi2 nanonets,” Angew. Chem. Int. Ed. 2008, 47, 7681-7684.
    5.12 Zhou, S.; Liu, X.; Lin, Y.; Wang, D., “Rational synthesis and structural characterizations of complex TiSi2 nanostructure,” Chem. Mater. 2009, 21, 1023-1027.
    5.13 Schmit, A. L.; Zhu, L.; Schmeisser, D.; Himpsel, F. J.; Jin. S., “Metallic single crystal CoSi nanowires via chemical vapor deposition of single source precursor,” J. Phys. Chem. B. 2006, 110, 18142-18146.
    5.14 Wang, Q.; Luo, Q.; Gu, C. Z., “Nickel silicide nanowires formed in pre-patterned SiO2 trenches and their electrical transport properties,” Nanotechnology 2007, 18, 195304-195308.
    5.15 Song, Y.; Schmitt, A. L.; Jin, S., “Ultralong single crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett. 2007, 7, 965-969.
    5.16 Song, Y; Jin, S., “Synthesis and properties of single crystal βNi3Si nanowires,” Appl. Phys. Lett. 2007, 90, 173122-173124.
    5.17 Zhang, Z.; Hellstrom, P. E.; Ostling, M.; Zhang, S. L., “Electrically robust ultralong nanowires of NiSi, Ni2Si and Ni31Si12,” Appl. Phys. Lett. 2006, 88, 43104-43106.
    5.18 Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu. K. N., “Observation of atomic diffusion at twin modified grain boundaries in copper,” Science 2008, 321, 1066-1069.
    5.19 Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D., “TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett. 2006, 6, 1637-1644.
    5.20 Lee, C. Y.; Lu, M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J., “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties,” Appl. Phys. Lett. 2008, 93, 113109-113111.
    5.21 Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J., “Free standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C. 2009, 113, 2286-2289.
    5.22 Liu, Z.; Zhang, H.; Wang, L.; Yang, D., “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,” Nanotechnology 2008, 19, 375602-375605.
    5.23 Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G;. Moon, H.; Kim, J. M.; Zang, D. S.; Jo, M. H., “Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties,” Adv. Mater. 2007, 19, 3637-3642.
    5.24 Araki, H.; Katayama, T.; Yoshino, K., “Field emission from aligned carbon nanotubes prepared by thermal chemical vapor deposition of Fe-phthalocyanine,” Appl. Phys. Lett. 2001, 79, 2636-2638.
    5.25 He, J. H.; Wu, T. H.; Hsin, C. L.; Li, K. M.; Che, L. J.; Chuen, Y. L.; Chou, L. J.; Wang, Z. L., “Beaklike SnO2 nanorods with strong photoluminescent and field emission properties,” Small. 2006, 1, 116-120.
    5.26 He, J. H.; Yang, R.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L., “Aligned AlN nanorods with multi-tipped surface, growth, field emission and cathodoluminescence properties,” Adv. Mater. 2006, 18, 650-654.
    5.27 Ok, Y. W.; Seong, T. Y., “Field emission from Ni disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 2006, 88, 43106-43108.
    5.28 Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B., “Magnetic properties of single crystalline CoSi nanowires,” Nano Lett. 2007, 7, 1240-1245.
    5.29 Seo, K.; Varadwaj, K. S. K.; Cha, D.; In, J.; Kim, J.; Park, J.; Kim, B., “Synthesis and electrical properties of single crystalline CrSi2 nanowires,” J. Phys. Chem. C. 2007, 111, 9072-9076.
    5.30 Yang, B.; Hu, H.; Wu, Y.; Luo, T.; Yang, X.; Qian, Y., “A coreduction silicification route to Ni2Si nanowire,” Chem. Lett. 2005, 34, 326-327.
    5.31 Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H., “Vapor phase synthesis and characterization of ε-FeSi nanowires,” Adv. Mater. 2006, 18, 1437-1440.
    5.32 Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., “Single crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 2004, 430, 61-65.
    5.33 Yao, Z.; Kane, C. L.; Dekker, C., “High field electrical transport in single wall carbon nanotubes,” Phys. Rev. Lett. 2000, 84, 2941-2944.
    5.34 Du, J.; Du, P.; Hao, P.; Huang, Y.; Ren, Z.; Han, G.; Weng W.; Zhao, G.., “Growth Mechanism of TiSi Nanopins on Ti5Si3 by Atmospheric Pressure Chemical Vapor Deposition,” J. Phys. Chem. C. 2007, 111, 10814-10817.
    5.35 Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T., “Ti5Si3 Nanowire and Its Field Emission Property,” Chem. Mater. 2008, 20, 2429-2431.
    5.36 Chang, C. M.; Chang, Y. C.; Lee, C. Y.; Yeh, P. H.; Lee, W. F.; Chen, L. J., “Ti5Si4 Nanobats with Excellent Field Emission Properties,” J. Phys. Chem. C. 2009, 113, 9153-9156.

    Chapter 7
    7.1 Lu, M. P.; Song, J.; Lu, M. Y.; Chen, M. T.; Gao, Y.; Chen, L. J., “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett. 2009, 9, 1223-1227.
    7.2 Wang, Z. L., “Towards self-powered nanosystems,” Adv. Funct. Mater. 2008, 18, 3553-3567.
    7.3 Wang, Z. L., “Self power nanotech,” Sci. Am. 2008, 298, 82-87.
    7.4 Wang, Z. L.; Song, J. H., “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 2006, 312, 242-246.
    7.5 Wang, X. D.; Song, J. H.; Liu, J.; Wang. Z. L., “Direct current nanogenerator driven by ultrasonic waves,” Science 2007, 316, 102-106.
    7.6 Qin, Y.; Wang, X. D.; Wang, Z. L., “Microfiber nanowire hybrid structure for energy scavenging,” Nature 2008, 451, 809-813.
    7.7 Xu, S.; Wei, Y.; Liu, J.; Yang, R.; Wang, Z. L., “Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes,” Nano Lett. 2008, 8, 4027-4032.
    7.8 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Baker, R. H.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., “Conversion of light to electricity by cis-X2Bis ruthenium charge transfer sensitizers on nanocrystalline TiO2 electrode,” J. Am. Chem. Soc. 1993, 115, 6382-6390.
    7.9 Sayama, K.; Sugihara, H.; Arakawa, H., “Photoelectrochemical properties of a porous NbO electrodes sensitized by a ruthenium dye,” Chem. Mater. 1998, 10, 3825-3832.
    7.10 Schlichthorl, G.; Park, N. G.; Frank, A. J., “Evaluation of the charge collection efficiency of dye sensitized nanocrystalline TiO solar cells,” J. Phys. Chem. B. 1999, 103, 782-791.
    7.11 Lagemaat, J. V. D.; Park, N. G.; Frank, A. J., “Influence of electrical potential distribution, charge transport and recombination on the photopotential and photocurrent conversion efficiency of dye sensitized nanocrystalline TiO solar cells,” J. Phys. Chem. B. 2000, 104, 2044-2052.
    7.12 Kongkanand, A.; Dominguez, R. M.; Kamat, P. V., “Single wall carbon nanotube scaffolds for photoelectrochemical solar cells,” Nano Lett. 2007, 7, 676-680.
    7.13 Jang, S. R.; Vittal, R.; Kim, K. J., “Incorporation of functionalized single wall carbon nanotubes in dye sensitized TiO solar cells,” Langmuir 2004, 20, 9807-9810.
    7.14 Lee, T. Y.; Alegaonkar, P. S.; Yoo, J. B., “Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes,” Thin Solid Films 2007, 515, 5131-5135.
    7.15 Chuan, Y. Y.; Lin, Y. F.; Liao, S. H.; Weng, C. C.; Huang, C. C.; Hsiao, Y. H.; Ma, C. C. M.; Chang, M. C.; Shao, H.; Tsai, M. C.; Hsieh, C. K.; Tsai, C. H.; Weng, F. B., “Preparation and properties of a carbon nanotube based nanocomposite photoanode for dye sensitized solar cells,” Nanotechnology 2008, 19, 375305-375313.
    7.16 Sirbuly, D. J.; Haoquan, M. L.; Yan, H.; Yang, P. D., “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B. 2005, 109, 15190-15213.
    7.17 Klimov, V. I., “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals,” J. Phys. Chem. B. 2006, 110, 16827-16845.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE