簡易檢索 / 詳目顯示

研究生: 蔡佾明
Tsai, I-Ming
論文名稱: bu^BSO(2n) 的代數穩定分解
The algebraic splitting of bu^BSO(2n)
指導教授: 顏東勇
Yan, Dong-Yung
口試委員: 翁秉仁
Ong, Ping-Zen
李華倫
Li, Hua-Lun
王信華
Wang, Shin-Hwa
陳正忠
Chen, Jeng-Chung
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 21
中文關鍵詞: 穩定分解連通K-理論廣義下同調分類空間
外文關鍵詞: Stable splitting, connective K-theory, generalised homology, Classifying space, Modules
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們將證明bu^BSO(2n)的上同調群同構於一系列E–模的直和,E=Z/2<Q_(0),Q_(1)>, n>=2。這將會給出BSO(2n)的連通K–理論的代數穩定分解。


    We show that the mod 2 cohomology of bu^BSO(2n) is isomorphic to a direct sum of E-modules, E=Z/2<Q_(0),Q_(1)>, n>=2. This would give the algebraic splitting of the complex connective K-theory of BSO(2n).

    誌謝 摘要 Abstract 1.Motivation---------------------------------------1 2.Introduction-------------------------------------2 3.Background and main result-----------------------5 4.Basic Notions------------------------------------9 5.Algebraic splitting of the spectra---------------12 6.Addendum-----------------------------------------19 Bibliography

    [1] J. F. Adams, Stable homotopy and generalized homology, Chicago Lecture notes in Math, University of Chicago Press, 1974.
    [2] J. F. Adams, Inifinite loop spaces, Hermann Weyl Lectures, The Institute for Ad- vanced Study, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1978, 96-131.
    [3] J. F. Adams and S. B. Priddy, Uniqueness of BSO, Math. Proc. Camb. Phil. Soc.,80, 1976, 475-509.
    [4] J. C. Becker and D.H. Gottlieb, The transfer map and fiber bundles, Topology, Vol. 14, Pergamon Press, 1975, 1-12.
    [5] R. R. Bruner and J. P. C. Greenlees, The connective K-Theory of finite groups, 1991.
    [6] R. M. Kane, Operations in connective K-theory, Memoirs of the American Mathe- matical Society, vol 34, Number 254, Providence, Rhode Island, USA, 1981.
    [7] A. Liulevicius, The cohomology of Massey-Peterson algebras, Math. Zeitschr., 105, 1968, 226-256.
    [8] E. Ossa, Connective K-theory of elementary abelian groups, In: Kawakubo K.(eds) Transformation Groups. Springer Lecture Notes in Mathmatics, vol 1375, 1989, 269-274.
    [9] H. R. Margolis, Spectra and the Steenrod Algebra, North-Holland Mathematical Library, Elsevier Science Publishers B.V., vol 29, 1983.
    [10] J. Milnor, The Steenrod Algebra and its dual, The Annals of Mathematics, 2nd Ser., vol 67, No.1., 1958, 150-171.
    [11] J. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974, 145.
    [12] N. E. Steenrod, Cohomology Operations, Princeton University Press, Annals of Mathematics Studies, No.50, 1962.
    [13] R. M. Switzer, Algebraic Topology-Homotopy and Homology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 212, Springer-Verlag, Berlin Heidelberg New York, 1975.
    [14] W. Stephen Wilson, The complex cobordism of BO(n), J. London Math. Soc. (2), 29, 1984, 352-366.
    [15] T. H. Wu, Stable splittings of the complex connective K-theory of BSO(2n+1), Math- ematical Journal of Okayama University, 60, 2018, 73-89.
    [16] W. T. Wu, Classes caract´eristiques et i-carr´es d’une vari´et´e, Comptes Rendus, 230, 1950, 508-511.
    [17] W. Stephen Wilson and D. Y. Yan, Stable splitting of the complex connective K- theory of BO(n), Topology and its Applications, 159, 2012, 1409-1414.

    QR CODE