簡易檢索 / 詳目顯示

研究生: 劉邦弘
Pang-Hung Liu
論文名稱: 利用同步輻射X光光源進行孔洞性氧化矽及奈米金屬之結構鑑定
Structural Characterization of Porous Silicas and Nano-Metals by Using Synchrotron X-ray Source
指導教授: 趙桂蓉
Kuei-Jung Chao
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 110
中文關鍵詞: 掠角X光繞射中孔洞二氧化矽X光吸收光譜奈米金屬沸石
外文關鍵詞: grazing-incident X-ray diffraction, mesoporous silica, X-ray absorption spectroscopy, nano-metal, zeolite
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同步輻射所產生的X光光源具有能量連續且可調變,準直性佳,高亮度等優點,非常適合進行掠角X光繞射,粉末X光繞射,X光反射率及X光吸收光譜等實驗上,並用以鑑定奈米材料之結構。
    在論文的第一章將對孔洞性材料及所論文中所用到的各種分析鑑定做一個簡單的介紹。第二章則是以掠角X光繞射及X光反射率來鑑定矽晶片基材上的中孔洞二氧化矽薄膜,並配合電子顯微鏡及電子繞射所觀察到的結果,以了解其中尺度之孔洞結構。另外在氧化鋁管的內壁所鍍上約1微米厚之沸石透膜,利用掠角X光繞射可不破壞管子來進行其X光繞射圖譜之偵測以確定其結構。第三章中,粉末X光繞射及X光吸收光譜被用來分析奈米金及奈米鉑的粒子大小,我們發現奈米金屬的大小及形態可以藉由不同的製備及還原過程來加以操控。在原位X光繞射實驗則可用來監控奈米金屬顆粒大小在高溫下的變化。第四章則是使用電腦模擬及X光吸收光譜(包含近吸收邊緣及延伸吸收精細結構之分析)來分析微孔洞沸石中所填入的鎵的形態。電腦摸擬的結果與X光吸收光譜及紅外光光譜的結果相當吻合,並可用以推測鎵在沸石中的位置。鎵在TMG/ZSM-5沸石中的化學狀態也可以原位X光近吸收邊緣光譜來監測,被還原的TMG/ZSM-5在773K高溫下極易被氧化。直接氧化與先還原再氧化之TMG/ZSM-5中,鎵的物種是不同的,也因而其催化活性上會有所差異。


    Structural characterization of zeolite and mesoporous silica in the forms of film and membrane as well as their incorporated nano-sized metals were performed by X-ray diffraction (GIXD and PXRD), reflectivity (XRR) and X-ray absorption spectroscopy (XAS) using synchrotron X-ray source.
    In the first chapter, an introduction of porous materials, nano-sized metals in porous materials and structural characterization methods employed in this thesis are described.
    In Chapter 2, on-substrate mesoporous silica films were investigated by GIXD, XRR and TEM. The better structured thin films were proved to have better mechanical properties. A thin layer of zeolite coated on the inner wall of an asymmetric ceramic tube was detected non-destructively by reducing the contribution of the crystalline support using GIXD.
    In the third chapter, the sizes of nano-Au and Pt were evaluated by both PXRD and XAS. It is interesting that sizes and morphologies were observed to be controlled through manipulating preparation and reduction conditions. In-situ PXRD was performed to detect the size increase of Au nanoparticles in reduced samples during thermal treatment.
    In Chapter 4, the local structure of gallium species in zeolites studied by computation simulation and XAS including XANES and EXAFS techniques is given. The simulation results of Ga/beta zeolites are in good agreement with previous EXAFS and FTIR results and can be used to predict the possible locations of gallium species in beta zeolites. The chemical state of Ga in as-synthesized TMG/ZSM-5 was monitored by in-situ XANES during reduction process. The reduced form sample was found to be oxidized fast at 773 K under oxygen atmosphere. Two kinds of oxidized gallium species, generated by direct oxidation and oxidation after reduction, respectively, were found to possess different catalytic activities.

    Chapter 1. Introduction 1 1.1 Microporous zeolites 1 1.2 Mesoporous materials 1 1.3 Metal in mesoporous silica 3 1.4 The aim of this study 4 1.5 Synchrotron X-ray radiation 5 1.6 X-ray absorption spectroscopy 7 1.7 X-ray diffraction and reflectivity 11 1.7.1 Thin film X-ray diffraction 11 1.7.2 Thin film X-ray reflectivity 16 1.7.3 Determination of particle size of nanometals 18 1.8 References 21 Chapter 2. Characterization of porous silica thin films and membranes by using synchrotron X-ray source 27 2.1 Structural characterization of mesoporous silica thin films 27 2.1.1 Introduction 27 2.1.2 Experimental 28 2.1.2.1 Sample preparation 28 2.1.2.2 Characterization 29 2.1.3 Results and discussion 30 2.1.3.1 TEM measurements 30 2.1.3.2 X-ray q-2q diffraction 34 2.1.3.3 GIXD and XRR measurements 36 2.1.3.4 Two- and three-dimensional structures of mesophase films 38 2.1.4 Conclusion 41 2.2 The relation between mechanical properties and porous structure in mesoporous silica thin films 43 2.2.1 Introduction 43 2.2.2 Characterization 44 2.2.3 Results and discussion 44 2.3 Characterization of MFI membrane supported on the inner wall of ceramic tube 50 2.3.1 Sample preparation 51 2.3.2 Characterization 51 2.3.3 Results and discussion 52 2.4 References 56 Chapter 3. Characterization of metals incorporated in mesoporous silicas 59 3.1 Introduction 59 3.2 Experimental 60 3.2.1 Sample preparation 60 3.2.2 X-ray absorption measurement and analysis 62 3.2.3 X-ray diffraction measurement 62 3.2.4 TEM with electron diffraction and N2 adsorption measurement 63 3.3 Results and discussion 63 3.3.1 pH effect in Au/SBA-15 63 3.3.1.1 Au complexes in as-prepared Au/SBA-15s 63 3.3.1.2 Reduction and decomposition of adsorbed chloroaurate complexes 68 3.3.1.3 Summary 72 3.3.2 Solvent effect in Pt/MCM-48 72 3.3.3 Solvent effect in Au/SBA-15 78 3.3.4 Reduction of Au in Au/SBA-15 82 3.3.4.1 Formation of Au by gaseous H2 reduction and liquid NaBH4 aqueous solution treatment 82 3.3.4.2 In-situ PXRD study of Au in reduced Au/SBA-15 during thermal treatment 84 3.4 References 86 Chapter 4. Characterization of gallium-containing zeolites 89 4.1 Gallium-containing beta zeolites 89 4.1.1 Computational method 89 4.1.2 Results and discussion 91 4.1.3 Conclusion 95 4.2 Gallium-containing ZSM-5 zeolites 97 4.2.1 XAS measurements 98 4.2.2 Results and discussion 99 4.3 Reference 106 Chapter 5. Conclusion and Perspectives 109

    Chapter 1
    [1] M.H. Sainte-Claire-Deville, Compt. Rend. 54 (1862) 324.
    [2] O. Weigel, E.Z. Steinhoff, Kristallogr. 61 (1925) 125.
    [3] J.W.Mcbain, in “The Sorption of Gases and Vapors by Solids”, Rutledge and Sons, London (1932) Chap.5
    [4] R.M. Milton, U. S. Patent 2,882,243-244 (1959).
    [5] D.W. Breck, U. S. Patent 3,130,007 (1964).
    [6] L.B. Sand, U. S. Patent 3,436,174 (1969).
    [7] R.J. Argauer, G.R. Landolt, U. S. Patent 3, 702, 886 (1972).
    [8] M.D. Jia, K.V. Peinemann, R.D. Behling, J. Membrane Sci. 73 (1992) 119.
    [9] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mccullen, J.B. Higgius, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.
    [10] S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun. (1993) 680.
    [11] K. Moller, T. Bein, Chem. Mater. 10 (1998) 2950.
    [12] C.M. Yang, H.S. Sheu, K.J. Chao, Adv. Funct. Mater. 12 (2001) 143.
    [13] A. Stein, B.J. Melde, R.C. Schroden, Adv. Mater. 12 (2000) 1403.
    [14] G.D. Stucky, D. Zhao, P. Yang, W. Lukens, N. Melash, B.F. Chemelka, Stud. in Surf. Science & Catal. 117 (1998) 1.
    [15] P.T. Tanev, T.J. Pinnavaia, Science 267 (1995) 865.
    [16] H. Yang, N. Coombs, G.A. Ozin, Nature 386 (1997) 692.
    [17] M. Ogawa, N. Masukawa, Micro. and Meso. Mater. 38 (2000) 35.
    [18] G.S. Attard, J.C. Glyde, C.G. Göltner, Nature 378 (1995) 366.
    [19] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 429 (2004) 281.
    [20] F. Schüth, Stud. in Surf. Science and Catal. 135 (2001) 1.
    [21] P.J. Bruinsma, N.J. Hess, J.R. Bontha, J. Liu, S. Baskaran, in “Proceedings of the MRS Symposium on Low Dielectric Constant Materials II: Materials Research Society”, Pittsburgh, PA, (1997) 105.
    [22] C. Sanchez, G.J.D.A. Soler-Illia, F. Ribot, D. Grosso, Compt. Rend. Chimie 6 (2003) 1131.
    [23] A. Bearzotti, J.M. Bertolo, P. Innocenzi, P. Falcaro, E. Traversa, J. Euro. Ceramic Soc. 24 (2004) 1969.
    [24] A. Cabot, J. Arbiol, A. Cornet, J. R. Morante, F. Chen, M. Liu, Thin Solid Films 436 (2003) 64.
    [25] G. Wirnsberger, B.J. Scott, G.D. Stucky, Chem. Commun. (2001) 119.
    [26] T. Yamada, H.S. Zhou, H. Uchida, M. Tomita, Y. Ueno, I. Honma, K. Asai, T. Katsube, Micro. and Meso. Mater. 54 (2002) 269.
    [27] C. Jin, J. Liu, X. Li, C. Coyle, J. Birnbaum, G.E. Fryxell, R.E. Williford, S. Baskaran, MRS Symp. Proc. 612 (2000) D4.5.1.
    [28] C.M. Yang, A.T. Cho, F.M. Pan, T.G. Tsai, K.J. Chao, Adv. Mater. 13 (2001) 1099.
    [29] L. Cot, A. Ayral, J. Durand, C. Guizard, N. Homanian, A. Julbe, A. Larbot, Solid State Science 2 (2000) 313.
    [30] M. Ogawa, J. Chem. Soc. Chem. Commun. 1996:1149.
    [31] H. Yang, A. Kuperman, N. Coombs, S. Mamicho-Afara, G.A. Ozin, Nature 379 (1996) 703.
    [32] S. Pevzner, O. Regev, R.Y. Yerushalui-Rozen, Current Opinion in Colloid and Interface Science 4 (2000) 420.
    [33] K. J. Edler and S. J. Roser, Int. Reviews in Phys. Chem. 20 (2001) 387.
    [34] V.V. Guliants, M.A. Carreon, Y.S. Lin, J. Membrance Sci. 235 (2004) 53.
    [35] H.W. Hillhouse, J.W. van Egmond, M. Tsapatsis, Langmuir 15 (1999) 4544.
    [36] H. Miyata and K. Kuroda, Chem. Mater. 12 (2000) 49.
    [37] H. Miyata and K. Kuroda, J. Am. Chem. Soc. 12 (2000) 49.
    [38] J.Y. Chen, F.M. Pan, A.T. Cho, K.J. Chao, T.G. Tsai, B.W. Wu, C.M. Yang and L. Chang, J. Electrochem. Soc. 150 (2003) F123.
    [39] P.S. Ho, J. Leu and W.W. Lee Eds. “Low Dielectric Constant Materials for IC Applications”, Springer, Berlin, (2002).
    [40] D. Chen, Solar Energy Materials & Solar Cells 68 (2001) 313.
    [41] G. Schmid, in “Clusters and Colloids” VCH: Weinheim, (1994).
    [42] A.P. Alivisatos, Science 271 (1996) 933.
    [43] T.M. Salama, R. Ohmishi, T. Shido, M. Ichikawa, J. Catal. 162 (1996) 169.
    [44] T. Hayashi, K. Tanaka and M. Haruta, J. Catal. 178 (1998) 566.
    [45] G.C. Bond, Catal. Today 72 (2002) 5.
    [46] C.M. Yang, M. Kalwei, F. Schüth and K.J. Chao, Appl. Catal. A. 254 (2003) 289.
    [47] C.M. Yang, P.H. Liu, Y.F. Ho, C.Y. Chiu and K.J. Chao, Chem. Mater. 15 (2003) 275.
    [48] M. Haruta and M. Daté, Appl. Catal. A. 222 (2001) 427.
    [49] A. Wolf and F. Schüth, Appl. Catal. A. 226 (2002) 1.
    [50] C.H. Ko, R. Ryoo, Chem. Commun. (1996) 2467.
    [51] R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem. 100 (1996) 17718.
    [52] M. Sasaki, M. Osada, N. Sugimoto, S. Inagaki, Y. Fukushima, A. Fukuoka, M. Ichikawa, Microporous Mesoporous Mater. 21 (1998) 597.
    [53] M. Sasaki, M. Osada, N. Higashimoto, T. Yamamoto, A. Fukuoka, M. Ichikawa, J. Mol. Catal. A. Chem. 141 (1999) 223.
    [54] U. Junges, F. Schüth, G. Schmid, Y. Uchida, R. Schlögl, Ber. Bunsen-Ges. Phys. Chem. 101 (1997) 1631.
    [55] A. Bianconi, in “X-ray absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES” D.C. Köningsberger, Prins, R. (Eds). New York: Wiley, pp. 573-662 (1988).
    [56] P.J. Durham, in “X-ray absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES” D.C. Köningsberger, Prins, R. (Eds). New York: Wiley, pp. 53-84(1988).
    [57] D.E. Sayers, E.A. Stern, F.M. Lytle, Phys. Rev. Lett. 27 (1971) 1204.
    [58] P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Rev. Mod. Phys. 53 (1981) 769.
    [59] T.M. Hayes, J. B. Boyce, Solid State Phys. 37 (1982) 173.
    [60] D.C. Köningsberger, in “X-ray absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES” Köningsberger, Prins, R. (Eds). New York: Wiley(1988).
    [61] H.W. Hillhouse, J.W. van Egmond, M. Tsapatsis, J.C. Hanson, J.Z. Larese, Microporous Mesoporous Mat. 44-45 (2001) 639.
    [62] G.J.D.A. Soler-Illia, E.L. Crepaldi, D. Grosso, D. Durand, C. Sanchez, Chem. Comm. (2002) 2298.
    [63] M. Klotz, P.-A. Albouy, A. Ayral, C. Ménager, D. Grosso, A.V. der Lee, V. Cabuil, F. Babonneau, C. Guizard, Chem. Mater. 12 (2000) 1721.
    [64] S.A. Holt, G.J. Foran, J.W. White, Langmuir 15 (1999) 2540.
    [65] S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau, J.-P. Boilot, J. Mater. Chem. 10 (2000) 1331.
    [66] D. Grosso, P.-A. Albouy, H. Amenitsch, A. R. Balkenende, F. Babonneau, J. Rivory, Res. Soc. Symp. Proc. 628 (2000) and Chem. Mater. 14 (2002) 931.
    [67] A. Gibaud, D. Grosso, B. Smarsly, A. Baptiste, J. F. Bardeau, F. Babonneau, D. A. Doshi, Z. Chen, C. Jeffrey Brinker, C. Sanchez, J. Phys. Chem. B 107 (2003) 6114.
    [68] J. Daillant, A. Gibaud, X-ray and neutron reflectivity, Springer pp. 87-120 and pp. 233-280 (1999).
    [69] X. Li, T.K.S. Wong, Rusli, D. Yang, Diamond and Related Materials 12 (2003) 963.
    [70] J. Bolze, M. Ree, H. S. Youn, Langmuir 17 (2001) 6683.
    [71] V. Holy, U. Pietsch, T. Baumbach, in “High-resolution X-ray scattering from thin films and multilayers” Springer, pp. 120-128 (1999).
    [72] K.J. Chao, P.H. Liu, K.Y. Huang, Comptes-Rendus Chimie to be published.
    [73] Z.L. Wang, in “Characterization of Nanophase Materials” Wiley-VCH, New York (2000).
    [74] D.B. Williams, C.B. Carter, in “Transmission Electron Microscopy” Plenum Press, New York (1996).
    [75] A. Jeutys, Phys. Chem. Chem. Phys. 1 (1999) 4059.

    Chapter 2
    [1] C.M. Yang, A.T. Cho, F.M. Pan, T.G. Tsai, K.J. Chao, Adv. Mater. 13 (2001)1099.
    [2] S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G.E. Fryxell, S. Thevuthasan, R.E. Williford, Adv. Mater. 12 (2000) 291.
    [3] P.S. Ho, J. Leu, W.W. Lee, Editors. “Low Dielectric Constant Materials for IC Applications” Berlin Heidelberg: Springer Verlag(2003).
    [4] W.C. Molenkamp, M. Watanabe, H. Miyata, S.H. Tolbert, J. Am. Chem. Soc. 14 (2004) 4476.
    [5] C.S. Tan, H.C. Lien, S.R. Lin, H.C. Cheng, K.J. Chao, J. Supercrit. Fluid. 26 (2003) 55.
    [6] P.J. Bruinsma, J.R. Bontha, J. Liu, S. Baskaran, U. S. Patent No. 5 922, 299, July 13 (1999).
    [7] J.Y. Chen, F.M. Pan, A.T. Cho, K.J. Chao, T.G., Tsai, B.W. Wu, C.M. Yang, L. Chang. J. Electrochem. Soc. 150 (2003) F123.
    [8] H. Fan, Y.F. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker, Nature, 405 (2000) 56.
    [9] Kuo-Ying Huang (黃國瑩), Master Thesis, “中孔洞氧化矽薄膜:製備及X光反射率之鑑定”, Department of Chemistry, National Tsinghua University, July (2004).
    [10] K. Yu, B. Smarsly, J. Brinker Adv. Func. Mater. 13 (2003) 47.
    [11] S. Besson, C. Ricolleau, T. Gacoin,C. Jacquiod, J.-P. Boilot Microporous and Mesoporous Materials 60 (2003) 43.
    [12] A. Hozumi, Y. Yokogawa, T. Kameyama, K. Hiraka, H. Sugimura, O. Takai, M. Okio, Adv. Mater. 12 (2001) 985.
    [13] A.T. Cho, T.G. Tsai, C.M. Yang, K.J. Chao, F.M. Pan, Electrochemical and Sold-state Letters 4 (2001) G35.
    [14] E.K. Lin, W.L. Wu, C. Jin, J.T. Wetzel, MRS Proceedings 612 (2001) D5.22.2.
    [15] S.T. Sie, Stud. in Surf. Sci. and Catal. 85 (1994) 587.
    [16] G. Ertl, H. Knözinger and J. Weitkamp Eds, “Handbook of Heterogeneous Catalysis” VCH Co., Weinheim, Vol. 1, pp. 286-386 (1997).
    [17] A.S.T. Chiang, K.J. Chao, J. Phys. and Chem. of Solids, 62 (2001) 1899.
    [18] D. Casnave, A. Giroirfendler, J. Sanchez, R. Loutaty and J.A. Dalmon, Catal. Today, 25 (1995), 309 and 403.
    [19] Hsin-Ling Cheng (鄭幸伶), Master Thesis, “孔洞性氧化矽管狀膜”, Department of Chemistry, National Tsinghua University, June (2002).

    Chapter 3
    [1] J. Shi, S. Gider, K. Bakcock, D.D. Awschalom, Science 271 (1996) 937.
    [2] J.Y. Ying, AIChE J. 46 (2000) 902.
    [3] G. Schmid, G.L. Hornyak, Curr. Opin. Solid State Mater. Sci. 2 (1997) 204.
    [4] Y. Valokitin, J. Sinzig, L.J. DeJongh, G. Schmid, I.I. Moiseev, Nature 384 (1997) 621.
    [5] L. Zhang, G.C. Papaefthymiou, J.Y. Ying, J. Phys. Chem. B 105 (2001) 7414.
    [6] a) T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science 261 (1993) 1316; b) C.R. Martin, ibid. 266 (1994) 1961; c) Z. Zhang, J.Y. Ying, M.S. Dresselhaus, J. Mater. Res. 13 (1998) 1745.
    [7] a) M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897; b) G. Schmid, G.L. Hornyak, Curr. Opin. Solid State Mater. Sci. 2 (1997)204.
    [8] A.P. Alivisastos, Science 271 (1996) 933.
    [9] a) C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710; b) D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G. D. Stucky, Science 279 (1998) 548.
    [10] U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27 (1999) 131.
    [11] (a) X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science 276 (1997) 923; b) H. Fan, Y. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. López, C.J.Brinker, Nature 405 (2000) 56.
    [12] a) C.M. Yang, H.S. Sheu, K.J. Chao, Adv. Funct. Mater. 12 (2002) 143; b) C.M. Yang, P.H. Liu, Y.F. Ho, C.Y. Chiu, K.J.Chao, Chem. Mater. 15 (2003) 275; c) C.M. Yang, M. Kalwei, F. Schüth, K.J. Chao, Appl. Catal. A. Gen. 254 (2003) 289.
    [13] M. Sasaki, M. Osada, N. Sugimoto, S. Inagaki, Y. Fukushima, A. Fukuoka, M. Ichikawa, Microporous Mesoporous Mater. 21 (1998) 597.
    [14] a) Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C.H. Ko, H.J.Shin, R. Ryoo, Angew. Chem. Int. Ed. 39 (2000) 3107; b) H.J. Shin, R. Ryoo, Z. Liu, O. Terasaki, J. Am. Chem. Soc. 123 (2001) 1246; c) O. Terasaki, Z. Liu, T. Ohsuma, H.J.Shin, Ryoo, R.; Microscopy and Microanalysis 8 (2002) 35.
    [15] A. Fukuoka, N. Higashimoto, S. Guan, S. Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Iijima, M. Ichikawa, J. Am. Chem. Soc. 123 (2001) 3373.
    [16] V. Alfredsson M.W. Anderson, Chem. Mater. 8 (1996) 1141.
    [17] F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 2136 (2003).
    [18] R. Ryoo, S.H. Joo J.M. Kim, J. Phys. Chem. B 103 (1999) 7435.
    [19] a) A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka, Science 261 (1993) 1299; b) K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark, K.K. Unger, Langmuir 16 (2000) 4648.
    [20] Yen-Po Chang (張彥博), Master Thesis, in preparation.
    [21] Y. Sakamoto, A. Fukuoka, T. Higuchi, N. Shimomura, S. Inagaki, M. Ichikawa, J. Phys. Chem. B 108 (2004) 853.
    [22] Ming-Hsin Cheng (鄭明欣), Master Thesis, “嵌入中孔道的奈米金屬”, Department of Chemistry, National Tsinghua University, July (2003).
    [23] F.W. Lytle, R.B. Greegor, E.C. Marques, D.R. Sandstorm, G.H. Via, J.H. Sinfelt, J. Catal. 95 (1985) 546.
    [24] E.A. Stern, M. Newville, Y. Yacoby, D. Haskel, Physica B. 208 (1995) 117.
    [25] A.L.Ankudinov, J. Rehr, J. Phys. Rev. B 56 (1997) R1712.
    [26] H.S. Sheu, P.H. Liu, H.L. Cheng, K.J. Chao, Y.P. Chang, Catal. Today 97 (2004) 55.
    [27] (a) Charles F. Baes, Jr. Robert E. Mesmer, “The hydrolysis of cations”, Robert E. KRIEGER (1986). (b) P.J. Murphy, M.S. LaGrange, Geochimica et Cosmochimica Acta 62 (1998) 3515.
    [28] P. Pan, S.A. Wood, Geochimica et Cosmochimica Acta 55 (1991) 2365.
    [29] C.H. Lin, S.H. Hsu, M.Y. Lee and S.D. Lin, J. Catal. 209 (2002) 62.
    [30] C.K. Chang, Y.J. Chen and C.T. Yeh, Appl. Catal. A 174 (1998) 13.
    [31] P. Scardi and P.L. Antonucci, J. Mater. Res. 8 (1993) 1829.
    [32] R.E. Benfield, D. Grandjean, M. Krőll, R. Pugin, T. Sawitowski and G. Schmid, J. Phys. Chem. B 105 (2001) 1961.
    [33] A. Jeutys, Phys. Chem. Chem. Phys. 1 (1999) 4059.
    [34] X.J. Guo, C.M. Yang, P.H. Liu, M.H. Cheng, and K.J. Chao, Crystal Growth & Design, in press.

    Chapter 4
    [1] R.M. Milton, U. S. Patent 2, 882, 243-244 (1959).
    [2] D.W.Breck, U. S. Patent 3, 130, 007 (1964).
    [3] L.B. Sand, U. S. Patent 3, 436, 174 (1969).
    [4] R.J. Argauer, G.R. Landolt, U. S. Patent 3, 702, 886 (1972).
    [5] Lung-Huei Lin (林龍輝), Ph. D. Thesis, Department of Chemistry, National Tsinghua University..
    [6] An-Chyi Wei (魏安祺), Ph. D. Thesis, “Applications of XAS on Characterization of Metal Containing Molecular Sieves and Metal Oxides”, Department of Chemistry, National Tsinghua University, January (2001).
    [7] W. Kohn, L.J. Sham, Phys. Rev. A. 140 (1965) 1133.
    [8] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
    [9] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37 (1988) 785.
    [10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M.Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian98, Gaussian, Inc., Pittsburgh PA, (1998).
    [11] CERIUS2, Molecular Modelling Software for Materials Research; Molecular Simulations, Inc.: San Diego, CA.
    [12] J. M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. deGruyter, Proc. R. Soc. London A420 (1988) 375.
    [13] K.J. Chao, S.P. Sheu, L.H. Lin, M.J. Genet, M.H. Feng, Zeolites 18 (1997) 18.
    [14] K. Okabe, N. Matsuboayashi, Bull. Chem. Soc. Jpn. 64 (1991) 2602.
    [15] K.J. Chao, A.C. Wei, H.C. Wu, J.F. Lee, Micro. and Meso. Mater. 35 (2000) 413.
    [16] Mayela García Sánchez, Ph. D. Thesis, “Characterization of Gallium-Containing Zeolites for Catalytic Applications”, Department of Inorganic Chemistry and Catalysis, Technische Universiteit Eindhoven, the Netherlands, December (2003).
    [17] R. Boese, A.J. Downs, T.M. Greene, A.W. Hall, C.A. Morrison, S. Parsons, Organometallics 22 (2003) 2450.
    [18] N.W. Mitzel, C. Lustig, R.J.F. Berger, N. Runeberg Angew. Chem., Int. Ed. 41 (2002) 2519.
    [19] K.M. Dooley, C. Chang G.L. Price, Appl. Catal. A: General 84 (1992) 17.
    [20] K. Nishi, K.-I. Shimizu, M. Takamatsu, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida, T. J. Hattori, Phys. Chem. B. 102 (1998) 10190.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE