簡易檢索 / 詳目顯示

研究生: 楊勝翃
Yang Sang-Hong
論文名稱: 以有限差分時域法模擬二維光子晶體中的電磁波傳播
The Simulation of the Electromagnetic Wave in the Two-Dimensional Photonic Crystal --Using Finite Difference Time Domain Method
指導教授: 呂助增
Lue Juh-Tzeng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 光子晶體平面波展開法有限差分時域法完美耦合層
外文關鍵詞: Photonic Crystal, Plane Wave Expansion, Finite Difference Time Domain, Perfectly Matched Layers
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立於本實驗曾經對於一維光子晶體[1] [2] [3][4]研究的基礎再加上近幾年來光子晶體理論的快速發展。所以實驗室開始著手於光子晶體的研究。
    而本論文的目的將是介紹電磁波在二維的光子晶體中傳遞現象。首先,我將從平面波展開法出發,藉由平面波的展開來瞭解在不同週期性結構的光子晶體,其可允許的傳送頻段與不被允許傳送的頻段的分佈,使我們之後在波源的選擇上有所依據。在數種電磁波解析的方法中,有限差分時域法[7](Finite Difference Time Domain)是分析空間中電場跟磁場在各方向分量有效的方法。所以我們另外再以FDTD法來模擬電磁波在光子晶體中傳遞的過程。
    而本論文共分六章,第一章是主要簡單的介紹完光子晶體,從第二章開始我們將從光子晶體的理論出發。在第二章裡,我們會著重於平面波展開法(Plane Wave Expansion)[5] [6],藉由平面波展開的方式,讓我們可以更容易瞭解晶體結構與電磁波傳導模態之間的關係。為了瞭解電磁波如何在光子晶體中傳輸!我們在第三章裡將介紹K.S.Yee在1966年提出的有限差分時域法(Finite Difference Time Domain)來分析呈現電磁波在光子晶體中的傳輸。因為要避免電腦模擬計算時,會耗費太多的時間及記憶體空間,我們將引進在第四章裡所介紹的完美耦合的吸收介質層[8] [9] [10]( Perfectly Matched Layers _ Absorbing Boundary Condition ),來增進電腦模擬時的效率。之後,第五章裡,我們會以(1)平面波展開法、(2)有限差分時域法之完美耦合的吸收介質層 兩種模擬計算的方法,交互分析並討論電磁波在不同光子晶體中的傳輸行為。最後在第六章中,則是簡單地把本論文作一個總結。


    目 錄 第一章 簡介光子晶體……………………………………………1 1 – 1 光子晶體…………………………………………1 1 – 2 光子晶體中的缺陷………………………………..2 1 – 3 光子晶體的理論…………………………………..3 1 – 4 研究動機及論文導引……………………………...3 第二章 平面波展開法……………………………………………5 2 – 1 馬克斯威方程式(Maxwell’s Equation)…………...5 2 – 2 Maxwell’s Equation的平面波展開………………….7 2 – 3 二維光子晶體的結構……………………………10 第三章 有限差分時域法………………………………………...15 3 – 1 歷史發展………………………………………..15 3 – 2 有限差分時域法的理論………………………….16 3 – 3 穩定條件………………………………….…….25 3 – 4 入射波源的選擇…………………………………27 第四章 吸收邊界…………………………………………………29 4 – 1 吸收邊界………………………………….……29 4 – 2 完美耦合層的吸收邊界………………………….30 4 – 3 完美耦合層的計算………………………………33 4 – 4 PML的模擬分析及討論………………………....34 4 – 5 PML的截止頻率………………………………..36 第五章 模擬結果與討論…………………………………………37 5 – 1 平面波展開法的計算結果與討論………………….37 5 – 2 有限差分時域法的模擬結果與討論……………….41 第六章 未來研究方向…………………………………………….51 Reference…………………………………………………………...52 附錄一:TE、TM之單一通道程式……………………………...56

    [1] Juh-Tzeng Lue,Yenn-Shyh Hor,”Optical filters constructed from multilayers of dielectric and thin metallic films operating in the anomalous skin effect region”, Opt.Soc.Am.B 6,pp.1103-1105 (1988)
    [2] Jian.S.Sheng,Juh-Tzeng Lue,Jyh-Haur Tyan,”Design criteria for band rejection filters made from multilayers of dielectric and ultrathin metal films”, Appl.Opt.Vol 30,pp.1746-1748 (1991)
    [3] Jian-Shang Sheng,Juh-Tzeng Lue,”Ultraviolet narrow-band rejection filters composed of multiple metal and dieletric layers”,Appl.Opt.Vol 31,pp.6117-6121, (1992)
    [4] Jian.S.Sheng,Juh-Tzeng Lue”Resonat reflectance dips induced by coupled surface plasmon polaritons in thin metsl-film/dielectric structrue”, Appl.Phys. A55,537(1992)
    [5] S.John and R.Rangarjan,Phys.Rev.Lett.B,Vol 38,10101 (1988)
    [6] M.Plihal and A.A. Maradudin:Phys.Rev.Lett B,Vol 44,8569 (1991)
    [7] K.S.Yee,”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas and Propagation, Vol.14,pp.302-307,1966.
    [8] Jean-Pierre Berenger,”A perfectly matched layer for the absorption of electromagnetic waves”,J.Com.Physics Vol.114,pp. 185-200,1994.
    [9] Jean-Pierre Berenger,”Perfectly matched layer for the FDTD solution of wavestructrue interaction problems”,IEEE Trans. Ant. Propagation,
    Vol.44,no.1 ,pp.110-117,Jan. 1996.
    [10] Jean-Pierre Berenger,”Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of computational physics,Vol. 127, pp.363-379,1996.
    [11] E.Yablonovitch,”Inhibited Spontaneous Emission in Solid-State Physical and Electronics”,Phys.Rev.Lett.58,2059 (1987)
    [12] S.John,”Strong localization of photons in certain disordered dielectric superlattices” ,Phys.Rev.Lett.58,2486 (1987)
    [13] M.Koshiba,”Wavelength division multiplexing and demultiplexing with photonic crystal wave guide couplers ”,Journal of Lightwave Technology,vol.19(12), p.1970-1975,DEC 2001
    [14] L.Adamowicz , V.Q.Nguyen,” Electromagnetic field in a slab of photonic crystal by BPM”,Optics and lasers in Enginnering ,Vol.35(2),p.67-78,FEB 2001
    [15] P.R.Villeneuve,S.Fan and J.D. Joannopoulos,”Microcavitives in photonic crystal:Mode symmetry tumability and coupling efficiency.”,Physical Review B,Vol.54,p.7873,1996.
    [16] C.Kee,J.Kim,H.Y. Park and K.J. Chang,”Thermal properties of a photon gap in photonic crystal”,Physical Review E,Vol.58,p.7908,1998.
    [17] R.D.Meade,A.M.Rappe,K.D.Brommer and J.D. Joannopoulous,”Accurate theoretical-analysis of photonic band-gap materical”,Physcal Review B,Vol.48, p.8434,1993.
    [18] D.Felbacq,G.Tayed and D.Maystre,”Scattering by a random set of parallel cylinfders,”Journal of The Optical Society of America A-Optics Image Science And Vision,Vol.11,p.2526-2538,1994.
    [19] G.Tayeb,D.Maystre,”Rigorous theoretical study of finite-size two sdimensional photonic crystals doped by microcavities”,Journal of The Optical Socity of America A-Optics Image Science And Vision,Vol.14.pp.3323-3332,1997.
    [20] D.Hermann,Frank M. and Busch K.,”Photonic band structure computations”, Optics Express,Vol.8(3),167-172,Jan 29 2001.
    [21]
    [22] John D.Joannopoulos : Photonic Crystals,Princeton University Press,1995.
    [23] K.M.leung:Physical Review Letter,Vol 65,p.2646,Nov,1990.
    [24] Ze Zhang:Physical Review Letter,Vol 65,p2650,Nov,1990.
    [25] A.A.Maradudin:Journal of Modern Optics,Vol 41,p.275-284,1994.
    [26] J.D.Joannopolulos,R.D.Meade,and J.N.Winn,”Photonic Crystals:molding the flow of light”,(New York:Princeton University Press,1995).
    [27] N.W.Ashcroft,and N.D.Mermin,”Tunable Photonic Crystals with Semiconducting Constituents ”,Phys,Rev,Lett.85,1875(2000).
    [28] R.N.Bracewell,”The Fourier Transform and Its Applications”,2nd Ed.(New York:Mcgraw-Hill,1986).
    [29] R.Holland,”Threde: a free-field EMP coupling and scattering code,”IEEE Trans. Nuclear Science, Vol.24,pp.2416-2421,1977.
    [30] K.S.Kunz,and K. M. Lee,”A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I:The method and its implementation,”IEEE Trans.Electromagnetic Compatibility, Vol.20,pp.328- 333,1978
    [31] G.Mur,”Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,”IEEE Trans. Electromagnetic Compatibility Vol.23,pp.377-382,1981
    [32] D.S.Katz,E.T.Thiele, and A.Tafloove,”Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes,”IEEE Microwave and Guided Wave Letters,Vol.4,pp.268-270,1994.
    [33] C.E.Reuter,R.M.Joseph,E.t.Thiele,D.S.Katz,and A.Taflove,”Ultrawideband absorbing boundary condition for termination of waveguiding structures in FDTD simulation,”IEEE Microwave and Guided Wave Latter,Vol.4,pp.344-346, 1994.
    [34] B.Enguist and A. Majda,”Absorbing boundary conditions for the numerical simulation of waves,”Math.Comput.,Vol.31,pp.629-651”,1971.
    [35] A.Bayliss and E.Turkel,”Radiation boundary conditions for wavelike equations, ”Commun.Pure Appl.Math.Vol.33,pp.707-725,1980.
    [36] Z.Liao,H.L.Wong,B.Yang, and Y.Yuan,”A transmitting boundary for transient wave analyses,”Sci.Sin.Vol.27,pp.1063-1076,1984.
    [37] R.L.Higdon,”Absorbing boundary conditions for difference approximation to the multidimensional wave equation,”Math.Comput.Vol.47,pp437-459,1986.
    [38] Wenbo Sun,Qiang Fu,and Zhizhang Chen,”Finite-difference time domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,”APPLIED OPTICS,Vol.38,No.15,pp.3141-3151,1999.
    [39] J.Xu,Z.Chen,and J.Chuang,”Numerical implementation of PML in the TLM-based finite difference time domain grids,”IEEE Trans.Microwave Theory Tech.Vol.45,pp.1263-1266,1997.
    [40] J.Xu,J.G..Ma,and Z.Chen,”Numerical validation of anonlinear PML scheme for absorption of nonlinear electromagnetic waves,”IEEE Trans.Microwave Theroy Tech.Vol.46,pp.1752-1758,1998.
    [41] E.L.Lindman,”’Free-Space’Boundary Conditions for the Time Dependent Wave Equation,”Journal of computational Physics,18,pp.66-78,1975.
    [42] R.L.Higdon,”Absorbing Boundary Conditions for Difference Approximation of the Multi-Dimensional Wave Equation,”Mathematics of Computation,47,176, pp.437- 459,1986.
    [43] Z.P.Liao,H.L.Wong,B-P.Yang and Y.-F.Yuan,”A Transmitting Boundary for Transient Wave Analysis,”Science Sinica A,27,10,pp.1063-1076,1984.
    [44] C.Rappaport and L.Bahrmasel,”An Absorbing Boundary Condition Based on Anechoic Absorber for UEM Scattering Computation,”Journal of electromagnetic Waves and Applications,6,12,pp.1621-1634,1992.
    [45] Z.S.Sackes,D.M.Kingsland ,R.lee,and J-F.Lee,”A perfectly Mateced Anisotrooic absorber for”Use an Absorbing Boundary Condition,” IEEE Trans.Antennas Propagat.,43,12.pp.1460-1463,1995.
    [46] S.D.Gedeney,”An Anisotropic Perfectly Matched Layer-Absorbing for the Truncation of FDTD Lattices,”IEEE Trans.Antennas Propagate,44,12,pp.1630- 1639,Dec.1996.
    [47] K.K.Mei and J.Fang,”Superaborption-A Method to Improve Absorbing Boundary Conditions,”IEEE Trans.Antrnnas Propagat , Vol.AP-40, 9 , pp.1001- 1010, 1992
    [48] Aaron Vincent Morton,”Photonic band structure calculations for 2D and 3D Photonic crystal,”The Faculty of the Department of Physiscs San Jose State University.August 2002.
    [49] 許委斌,”時域有限差分方程之研究及其在光子晶體之應用,”大同大學光電工程研究所,90碩士論文.
    [50] 陳科遠,”一維與二維光子晶體之分析與模擬,”交通大學電子物理系,90碩士論文.
    [51] 林振華,”電磁場與天線分析一使用時域有限差分法(FDTD)”,全華科技圖書股份有限公司,88年11月.
    [52] 張智星,”Matlab 程式設計與應用”清蔚科技出版社,2000年11月2版.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE