簡易檢索 / 詳目顯示

研究生: 郭 驥
Guo, Ji
論文名稱: 整函數的整除問題
Quotient Problems for Entire Functions
指導教授: 王姿月
Wang, Julie Tzu-Yue
張介玉
Chang, Chieh-Yu
口試委員: 于靖
Yu, Jing
夏良忠
Hsia, Liang-Chung
李華介
Li, Hua-Chieh
汝敏
Ru, Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 整函數整除線性遞推數列
外文關鍵詞: Entire, quotient, recurrences
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於互素的遞歸數列$\{{\bf F}(n)\}_{n\in\mathbb N}$和$\{{\bf G}(n)\}_{n\in\mathbb N}$,我們知道僅有有限多個正整數$n$使得${\bf F}(n)$被${\bf G}(n)$整除。本文中我們將研究該整除問題在複變函數中的類比。

    首先,假設$f$和$g$是乘法獨立的整函數。我們希望研究是否存在無窮多個正整數$n$使得$f^n-1$會被$g^n-1$整除。這一問題需要對$f^n-1$和$g^n-1$公因子上界進行一個合適的估計。為了得到這一估計,我們需要把\cite{hussein2018general}中的主要結果改進成truncated version。然後我們會把定理中的variety取為$\PP^1\times\PP^1$的blow-up,並且計算該定理中相應的常數。

    接下來,我們會推廣上述整除問題。準確地說,我們將研究$F(n)=a_0+a_1f_1^n+\cdots+a_lf_l^n$是否會被$ G(n)=b_0+b_1g_1^n+\cdots+b_mg_m^n$整除,其中,$f_i$和$g_j$都是非常數的整函數,而除了$a_0$可能為零以外,$a_i$和$b_j$都是非零常數。我們的結論是如果對於不全是零的整數組$(i_1,\dots,i_l,j_1,\dots,j_m)$,$f_1^{i_1} \cdots f_l^{i_l}g_1^{j_1}\dots g_m^{j_m}$都不是整數,那麼$\mathcal N=\{n\in\NN |F(n)/G(n)\text{ 仍然是一個整函數}\} $是一個有限集合。我們接下來考慮更一般的情況。假設$a_i$和$b_j$相對於$(g_1,\dots,g_m)$緩慢增長的,那麼我們有類似的結論。


    Let $\{{\bf F}(n)\}_{n\in\mathbb N}$ and $\{{\bf G}(n)\}_{n\in\mathbb N}$ be linear recurrence sequences. It is a well-known diophantine problem to decide the finiteness of the set $\mathcal N$ of natural numbers such that their ratio ${\bf F}(n)/{\bf G}(n)$ is an integer. In this thesis, we study an analogue of such a quotient problem in the complex situation.

    First, let $f$ and $g$ be entire functions which are multiplicatively independent. We want to determine whether $f^n-1$ is divisible by $g^n-1$ for infinitely many $n$. This is an application of the GCD estimate of $f^n-1$ and $g^n-1$, i.e. the Nevanlinna counting function for the common zeros of these two sequences of functions. For this estimate, we need to formulate a truncated Nevanlinna second main theorem for effective divisors by modifying a theorem in \cite{hussein2018general} and explicitly computing the constants involved for a blow-up of $ \mathbb{P}^1\times \mathbb{P}^1$ along a point.

    Next, we generalize the quotient problem to a multi-variable version. Precisely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_0+a_1f_1^n+\cdots+a_lf_l^n$ and $ G(n)=b_0+b_1g_1^n+\cdots+b_mg_m^n$, where the $f_i$ and $g_j$ are nonconstant entire functions and the $a_i$ and $b_j$ are non-zero constants except that $a_0$ can be zero. We will show that the set $\mathcal N=\{n\in\NN |F(n)/G(n)\text{ is an entire function}\}$ is finite under the assumption that $f_1^{i_1} \cdots f_l^{i_l}g_1^{j_1}\dots g_m^{j_m}$ is not constant for any non-trivial index set $(i_1,\dots,i_l,j_1,\dots,j_m)\in\mathbb Z^{l+m}$. We also consider the generalization of this problem in which we allow $a_i$ and $b_j$ to be slow growth entire functions with respect to $(g_1,\dots,g_m)$ by modifying the second main theorem with moving targets to a truncated version.

    1 Introduction 1 1.1 The Quotient Problem for Linear Recurrences . . . . . . . . . . . . . . 2 1.2 The GCD Problem of Linear Recurrences . . . . . . . . . . . . . . . . 3 1.3 Main Results on the Quotients of Entire Functions . . . . . . . . . . . . 6 1.3.1 Divisibility of fn 􀀀 1 and gn 􀀀 1 . . . . . . . . . . . . . . . . 7 1.3.2 Quotient Problem for Entire Functions . . . . . . . . . . . . . . 8 1.3.3 Quotient Problem for Entire Functions with Moving Targets . . 9 2 Preliminaries 11 2.1 Nevanlinna Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Roth’s Theorem and the Subspace Theorem . . . . . . . . . . . . . . . 18 2.3 Vojta’s Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Further Results in Nevanlinna Theory 23 3.1 Second Main Theorem for Divisors in Subgeneral Position . . . . . . . 23 3.2 Nevanlinna theory with moving targets . . . . . . . . . . . . . . . . . . 27 3.2.1 A Second Main Theorem with Moving Targets . . . . . . . . . 27 3.2.2 Borel’s lemma and Green’s theorem with moving targets . . . . 33 4 The Asymptotic GCD for Entire Functions fn 􀀀 1 and gn 􀀀 1 37 4.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 The Proof of Theorem 1.11 . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Quotient Problems for Entire Functions 45 5.1 The Quotient for fn 􀀀 1 and gn 􀀀 1 . . . . . . . . . . . . . . . . . . . 45 5.1.1 Unit Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.2 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Proof of Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Proof of Corollary 1.14 and Theorem 1.13 . . . . . . . . . . . . . . . . 58 A Exponential Polynomials 66 Bibliography 68

    [1] L. M. Adleman, C. Pomerance and R. S. Rumely, On Distinguishing Prime Numbers from Composite Numbers, Annals of Mathematics 117 (1983) no. 1, 173–206.
    [2] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs 4, Cambridge University Press, 2006.
    [3] E. Borel, Sur les zéros des fonctions entières, Acta mathematica 20 (1897) no. 1, 357–396.
    [4] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the GCD of an-1and bn-1, Mathematische Zeitschrift 243 (2003) no. 1, 79–84.
    [5] P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear recurrences, Inventiones mathematicae 149 (2002) no. 2, 431–451.
    [6] P. Corvaja and J. Noguchi, A new unicity theorem and Erdös’problem for polarized semi-abelian varieties, Mathematische Annalen 353 (2012) no. 2, 439–464.
    [7] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets, Indagationes Mathematicae 9 (1998) no. 3, 317–332.
    [8] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Mathematica 53 (1984) no. 2, 225–244.
    [9] C. Fuchs, An upper bound for the GCD of two linear recurring sequences, Mathematica Slovaca 53 (2003) no. 1, 21–42.
    [10] C. Fuchs, Diophantine problems with linear recurrences via the subspace theorem, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005) no. 3. 69
    [11] E. Gourin, On irreducible polynomials in several variables which become reducible when the variables are replaced by powers of themselves, Transactions of the American Mathematical Society 32 (1930) no. 3, 485–501.
    [12] M. L. Green, Some Picard theorems for holomorphic maps to algebraic varieties, American Journal of Mathematics 97 (1975) no. 1, 43–75.
    [13] N. Grieve and J. T.-Y. Wang, Greatest common divisors with moving targets and linear recurrence sequences, arxiv 1902.09109.
    [14] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag New York, 1977.
    [15] M. Hindry and J. H. Silverman, Diophantine Geometry: An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag New York, 2000.
    [16] S. Hussein and M. Ru, A general defect relation and height inequality for divisors in subgeneral position, Asian Journal of Mathematics 22 (2018) no. 3, 477–492.
    [17] S. L. Kleiman, Toward a numerical theory of ampleness, Annals of Mathematics 84 (1966) no. 3, 293–344.
    [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer Science & Business Media, 1987.
    [19] S. Lang, Fundamentals of Diophantine geometry, Springer Science & Business Media, 1983.
    [20] P. D. Lax, The quotient of exponential polynomials, Duke Mathematical Journal 15 (1948) no. 4, 967–970.
    [21] A. Levin, On the Schmidt subspace theorem for algebraic points, Duke Mathematical Journal 163 (2014) no. 15, 2841–2885.
    [22] A. Levin, Greatest common divisors and Vojta’s conjecture for blowups of algebraic tori, Inventiones mathematicae 215 (2019) no. 2, 493–533. 70
    [23] F. Luca, On the Greatest Common Divisor of u 􀀀 1 and v 􀀀 1 with u and v Near I-units, Monatshefte für Mathematik 146 (2005) no. 3, 239–256.
    [24] L. MacColl, A factorization theory for polynomials in x and in functions e x, Bulletin of the American Mathematical Society 41 (1935) no. 2, 104–109.
    [25] M. R. Murty and V. K. Murty, On a problem of Ruderman, The American Mathematical Monthly 118 (2011) no. 7, 644–650.
    [26] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem for holomorphic curves into semiabelian varieties II, Forum Mathematicum 20 (2008) no. 3, 469–503.
    [27] C. F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian Journal of Mathematics 23 (1981) no. 1-3, 1–15.
    [28] C. F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna
    bounds, or better, Journal of Number Theory 21 (1985) no. 3, 347–389.
    [29] H. Pasten and J. T.-Y. Wang, GCD bounds for analytic functions, International Mathematics Research Notices 160 (2017) no. 1, 47–95.
    [30] A. van der Poorten, Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles, Comptes Rendus Mathématique. Académie des Sciences. Paris 302 (1988), 97–102.
    [31] A. Van der Poorten and H. Schlickewei, The growth conditions for recurrence sequences, Macquarie University Mathematical Reports 82 (1982) no. 0041.
    [32] A. Van der Poorten and R. Tijdeman, On common zeros of exponential polynomials, L’Enseignement Mathématique. Revue Internationale. 2e Série 21 (1975) no. 1, 57–67.
    [33] A. van der Poorten, Some facts that should be better known, especially about rational functions, Number theory and applications (Banff, AB, 1988) 265 (1989), 497–528. 71
    [34] Q. I. Rahman, The quotient of finite exponential sums, Tohoku Mathematical Journal, Second Series 12 (1960) no. 2, 345–348.
    [35] J. F. Ritt, A factorization theory for functions , Transactions of the
    American Mathematical Society 29 (1927) no. 3, 584–596.
    [36] J. F. Ritt, On the zeros of exponential polynomials, Transactions of the American Mathematical Society 31 (1929) no. 4, 680–686.
    [37] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955) no. 1, 1–20.
    [38] M. Ru, On a general form of the second main theorem, Transactions of the American Mathematical Society 349 (1997) no. 12, 5093–5105.
    [39] M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific, 2001.
    [40] M. Ru and J. T.-Y. Wang, Truncated second main theorem with moving targets, Transactions of the American Mathematical Society 356 (2004) no. 2, 557–571.
    [41] M. Ru and W. Stoll, The second main theorem for moving targets, The Journal of Geometric Analysis 1 (1991) no. 2, 99–138.
    [42] M. Ru and P. Vojta, A birational Nevanlinna constant and its consequences, arxiv 1608.05382.
    [43] M. Ru and J. T.-Y. Wang, A subspace theorem for subvarieties, Algebra & Number Theory 11 (2017) no. 10, 2323–2337.
    [44] R. Rumely, Notes on van der Poorten’s proof of the Hadamard Quotient Theorem, Séminaire de Théorie des Nombres, Paris 1986–87, Progress in Math 75 (1988), 349–409.
    [45] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, 1980. 72
    [46] H. S. Shapiro, The expansion of mean-periodic functions in series of exponentials, Communications on pure and applied mathematics 11 (1958) no. 1, 1–21.
    [47] L. Shi and M. Ru, An improvement of Chen-Ru-Yan’s degenerated second main theorem, Science China Mathematics 58 (2015) no. 12, 2517–2530.
    [48] J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monatshefte für Mathematik 145 (2005) no. 4, 333–350.
    [49] R. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, Journal für die reine und angewandte Mathematik 368 (1986), 134–141.
    [50] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics 1239, Springer, 1987.
    [51] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, American Journal of Mathematics 119 (1997) no. 1, 1–17.
    [52] P. Vojta, Diophantine approximation and Nevanlinna theory, Lecture Notes in Mathematics 2009, Springer, 2011.
    [53] J. T.-Y. Wang, An effective Roth’s theorem for function fields, The Rocky Mountain Journal of Mathematics 26 (1996) no. 3, 1225–1234.
    [54] U. Zannier, Diophantine equations with linear recurrences An overview of some recent progress, Journal de Théorie des Nombres de Bordeaux 17 (2005), 423–435.

    QR CODE