簡易檢索 / 詳目顯示

研究生: 劉靜方
Liu, Ching-Fang
論文名稱: 發展倒推式超投資組合架構以評估多層投資組合相互作用關係─以餐點組合為例
Developing Backward-type Hyper-portfolio Selection Framework to Evaluate Multi-layer Portfolios with Interdependent Items
指導教授: 簡禎富
Chien, Chen-Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 66
中文關鍵詞: 超投資組合倒推式投資組合混整數線性規劃
外文關鍵詞: Hyper-portfolio, Backward-type portfolio, MILP model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 投資組合的概念已發展成一決策方法,長期以來廣泛應用於評估及評選各產業中多屬性之最佳組合,但僅對於單階組合結構的問題做選擇與探討,決策者往往將較大且複雜的問題分解成多個子問題分別討論,並藉由投資組合的評選將多個子問題合成原始問題的最佳方案。
    本研究的目的在於發展可同時考量多層投資組合決策問題的超投資組合架構,多層決策問題為由最終決策到各單位決策中經多次組合選擇關係的問題,超投資組合可定義為包含多個垂直及水平投資組合相互作用特性的問題架構,由多個倒推式投資組合(backward-type portfolio)垂直整合而成。以組合屬性考量,倒推式投資組合基本組合屬性分為獨立、相關、綜效三類,本研究以雙層投資組合決策層級為主體,探討垂直組合屬性交互影響的作用與特性,歸納出除了原有組合屬性外還增加相互依賴特性,將單層決策維度擴展成多層維度以解決更大型組合決策問題。
    本研究以菜單設計問題為例,而評選單一菜餚組合而成一餐再組合成一份菜單的決策過程即為雙層決策問題,在此採用超投資組合概念架構餐點組合問題,並應用多屬性混整數線性規劃模型考量多層多項屬性以評估餐點組合效益,有效地解決實際養老院菜單設計的問題。研究中發現超投資組合適用於多屬性及多層級問,配合啟發式演算法可有效且快速解決大型且複雜的決策問題。


    Portfolio selection has been developed as a decision method for centuries and it is adopted in many fields for evaluating and selecting portfolios of multi-attribute item. Many studies have dealt this problem by decomposing complicated problems and focusing on single layer of portfolio to solve the subporblems.
    This study aims to develop a “hyper-portfolio” selection framework for the multi-layer portfolio decision problem. Multi-layer portfolio problem is defined as a combination of portfolios which are the combinations of items. In particular, Take, for example, menu consists of combination of interrelated meals which consist of combinations of interrelated food items. The proposed generic hyper-portfolio selection framework is based on backward-type selection. The vertical interactions between two layers of portfolio are derived with portfolio interactions between portfolio components. In hyper-portfolio, identified independent, interrelated and synergistic attributes perform similar properties in portfolio selection; in addition, interdependent attribute is proposed for inseparable affiliation of portfolio elements.
    This thesis applies the proposed framework for menu design problem with nine food item attributes during time horizon. Based on the item attributes, the portfolio selection is for meal design; furthermore, the hyper-portfolio selection evaluates menu performance by a multi-criteria mixed-integer-linear-programming (MILP) model. Finally, the thesis illustrates the hyper-portfolio MILP model calculating process, and a real nurse house menu design case. We find that hyper-portfolio selection outperforms in dealing with multi-attribute and hierarchical decision problems.

    Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Research aims 2 1.3 Organization of this thesis 3 Chapter 2 Literature Review 4 2.1 Portfolio 6 2.1.1 Comparisons of project selection and portfolio selection 6 2.1.2 Related portfolio selection problem 8 2.1.3 The classification of portfolio attributes 12 2.2 Mixed-Integer-Linear-Programming (MILP) 13 2.3 Menu design problem 17 Chapter 3 MILP Model for Assessing Meals with Interdependent Attributes 20 3.1 Hyper-portfolio 24 3.1.1 Hyper-portfolio framework 24 3.1.2 Hyper-portfolio attributes 25 3.2 Problem definition 30 3.3 Meal composition and portfolio attributes 32 3.4 Attributes definitions 34 3.5 The MILP model 38 3.5.1 The portfolio model 38 3.5.2 Hyper-portfolio MILP model 42 3.6 A numerical example 43 Chapter 4 Case Study 52 4.1 Data preparation 52 4.2 Importance among attributes 56 4.3 MILP model optimization 58 Chapter 5 Conclusion and Further Research 62 Reference 64

    Archer, N. P. and F. Ghasemzadeh (1999), “An Integrated Framework for Project Portfolio Selection,” International Journal of Project Management, vol. 17, no. 4, pp. 207-216.
    Bemporad, A., F. Borrelli, and M. Morari (2000), “Piecewise Linear Optimal Controllers for Hybrid Systems,” American Control Conference, Proceedings of the 2000, vol. 2, pp. 1190-1194.
    Bender A. (1996), “MILP Based Task Mapping for Heterogeneous Multiprocessor Systems,” EURO-DAC'96 with EURO-VHDL’96, Geneva, pp. 190-197.
    Bosch, R. A. (1993), “The Diet Problem Revisited: Eating at McDonald’s,” OR/MS Today, August, pp. 30-31.
    Chien, C. (2002), “A Portfolio-Evaluation Framework for Selecting R&D Projects,” R&D Management, vol. 32, no. 4, pp. 359-368.
    Chien, C. and F. Sainfort (1998), “Evaluating the Desirability of meals: An Illustrative Multiattribute Decision Analysis Procedure to Assess Portfolios with Interdependent Items,” Journal of Multi-Criteria Decision Analysis, vol. 7, pp. 230-238.
    Choi, Y. K. (1995), “The Sensitivity in Tests of the Efficiency of a Portfolio and Portfolio Performance Measurement,” The Quarterly Review of Economics and Finance, vol. 95, no. 2, summer, pp. 187-206.
    Cooper, R. G., S. J. Edgett, and E. J. Kleinschmidt (1999), “New Product Portfolio Management: Practices nd Performance,” Journal of Production Innovation Management, vol. 16, pp. 333-351.
    Delfanti, M. and G. P. Granelli, (2000), “Optimal Capacitor Placement Using Deterministic and Genetic Algorithms,” IEEE, vol. 15, no. 3, pp. 1041-1046.

    Dubois, A. and A. C. Pedersen (2002), “Why Relationships do not Fit into Purchasing Portfolio Models-A Comparison between the Portfolio and Industrial Network Approaches?” European Journal of Purchasing & Supply Management, vol. 8, pp. 35-42.
    Eantani, T., H. Ichihashi, and H. Tanaka (2001), “Estimation in DEA by Possibility Regression with the Upper and Lower Approximations,” Proc. of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 2718-2723.
    Fletcher, L. R., P. M. Soden, and A. S. I. Zinober (1994), “Linear Programming Techniques for The Construction of Palatable Human Diets,” Journal of the Operational Research Society, vol. 45, no. 5, pp. 489-496.
    Fox, R. (1999), “A Generic Task Strategy for Solving Routine Decision Making Problems,” Proceedings of 11th International Conference on Tools with Artificial Intelligence, IEEE Computer Society Press, pp. 319-322.
    Huang, C. (2004), Using Backward-type Portfolio Selection Methods to Construct Optimal Portfolio Evaluated Index and Model, Master Thesis, National Tsing Hua University.
    Jacob, W. F. and Y. H. Kwak (2003), “In Search of Innovative Techniques to Evaluate Pharmaceutical R&D Projects,” Technovation, vol. 23, pp. 291-296.
    Jain, V. and I. E. Grossmann (2001), “Algorithms for Hybrid MILP / CP Models for a Class of Optimization Problems,” INFORMS Journal on Computing, vol. 13, no. 4, pp. 258-276.
    Klapka, J. and P. Pinos, (2002), “Decision Support System for Multicriterial R&D and Information Systems Projects Selection,” European Journal of Operational Research, vol. 140, pp. 434-446.
    Lim, Y. C., Y. Sun, and Y. J. Yu (2002), “Design of Discrete-coefficient FIR Filters on Loosely Connected Parallel Machines,” IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1409-1416.
    Lin, W. H. and C. H. Wang, (2004), “An Enhanced 0-1 Mixed-integer LP Formulation for Traffic Signal Control,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 238-245.
    Linton, J. D., S. T. Walsh, and J. Morabito (2002), “Analysis, Ranking and Selection of R&D Projects in a Portfolio,” R&D Management, vol. 32, no. 2, pp. 139-148.
    Mansini, R. and M. G. Speranza (1999), “Heuristic Algorithms for the Portfolio Selection Problem with Minimum Transaction Lots,” European Journal of Operational Research, vol. 114, pp. 219-233.
    McFarlan, F. W. (1974), “Portfolio Approach to Information Systems,” Harvard Business Review, September-October, pp. 142-150.
    Mendez, C. A. and J. Cerda (2002), “An MILP-based Approach to the Short-Term Scheduling of Make-And-Pack Continuous Production Plants,” OR Spectrum, vol. 24, pp. 403-429.
    Mohanty, R. P. and S. G. Deshmukh (1997), “Evolution of a Decision Support System for Human Resource Planning in a Petroleum Company,” International Journal of Production Economics, vol. 51, pp. 251-261.
    Owen, J. H. and S. Mehrotra (2001), “Experimental Results on Using General Disjunctions in Branch-And-Bound for General-Integer Linear Programs,” Computational Optimization and Applications, vol. 20, pp. 159-170.
    Ringuest, J. L., S. B. Graves, and R. H. Case (2004), “Mean-Gini Analysis in R&D Portfolio Selection,” European Journal of Operational Research, vol. 154, pp. 157-169.
    Soden, P. M. and L. R. Fletcher (1992), “Modifying Diets to Satisfy Nutritional Requirements Using Linear Programming,” British Journal of Nutrition, vol. 68, pp. 565-572.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE