簡易檢索 / 詳目顯示

研究生: 羅冠昕
Lo, Kuan-Hsin
論文名稱: Ordered Nanoarrays from Pore-Filling Nanoporous Templates and Corresponding Nanoscale Spatial Effect
利用奈米孔洞模板製備奈米有序陣列及其空間侷限效應
指導教授: 何榮銘
Ho, Rong-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 151
中文關鍵詞: 團聯共聚合物奈米孔洞模板發光材料
外文關鍵詞: Block copolymers, Nanostructures, Nanoporous materials, Photoluminescence, template
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of degradable BCPs, polystyrene-b-poly(L-lactide) (PS-PLLA), with PLLA hexagonal cylinder (HC) morphology has been synthesized in this study. Well-oriented, perpendicular PLLA cylinders of PS-PLLA thin films were efficiently achieved by spin coating using appropriate solvents regardless of the use of substrates. After hydrolysis of PLLA, well-oriented nanoporous templates over large area in addition to uniform surface with controlled thickness and domain size were obtained; providing a simple and efficient path to prepare topographic nanopatterns for optical and biological applications. Nanoporous templates with well-oriented periodic arrays have numerous potential applications through pore-filling process. It is important to examine the features of pore-filling process for the nanoporous templates so as to create various templated nanomaterials for practical applications.
    To achieve efficient pore-filling process, specific treatments on the polymeric templates were carried out. The pore-filling process involves the trust of capillary force driven from the tunable wetting property of solution for the templates. By taking advantage of the pore-filling process, in-situ formations of CdS nanostructures can be achieved by introducing the solution of Cd ions followed by the treatment of H2S vapor as reduction agent. Various shapes of the cluster of CdS nanocrystals including tubular-like and cylinder-like CdS nanostructures in the templates can thus be obtained through different pore-filling processes including air-block releasing and directed capillary force methods. Interesting spectroscopic results were found in ultraviolet (UV) and potoluminescence (PL) spectrum, indicating that the emission intensity of the CdS nanoarray can be modulated by pore-filling process.
    Furthermore, the same pore-filling process for the nanoporous PS template was developed for hybridization by exploiting the directed capillary force with the tunable wetting property of pore-filling solution. For medical application, we elucidated the feasibility of using the nanoporous PS templates for the controlled release of drugs through pore-filling sirolimus (a potent immunosuppressive drug) into the templates. Consequently, after the pore-filling process, sirolimus-loaded cylindrical and lamellar nanoarrays can be obtained. A comparison with those of macroscale templates indicated that the developed nanoporous templates can successfully entrap the loaded drug in nanoscale pores, markedly increasing the duration of drug delivery. As a result, the size, geometry, and depth of the nanoscale pores of the nanoporous templates can be readily controlled to regulate the drug release profiles.
    For optical application, we aim to examine the feasibility of forming nanostructured thin films with cylindrical nanoarray by pore-filling chromophore/dispersant mixture or hydrophilic conjugated polymers into the nanoporous PS template. Through a specific pore-filling process, i.e., a solvent-annealing process, the optical materials can be introduced into the template to form well-defined nanoarrays with specific optical characters. It is important to realize the corresponding specific properties for the control of hybridized nanostructures. First, a simple method to generate ordered 1-pyrenebutanol/isochromanone (PY/CM) nanoarrays through a pore-filling process for nanoporous polymer templates was developed so as to enhance the chromophore luminescence of the PY. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy revealed that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of template are completely filled by the mixture of PY/CM. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of PY and CM, i.e., the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform infrared spectroscopy combining with grazing incident wide-angle X-ray (GI-WAXD) diffraction. The nanostructured thin film gives better dispersion for the pyrene in the pyrene/dispersan mixture due to nanoscale spatial effect so as to inhibit the self-quenching problem, resulting in the enhanced luminescence.
    Moreover, the introduction of dispersants not only results in the disassociation of non-emission pyrene aggregates but also drives the anisotropic orientation of pyrene molecules due to nanoscale spatial effect. Consequently, the behavior of chromophore luminescence such as monomer and excimer emissions as well as self-quenching is strongly dependent upon the mixing ratio of PY and CM. With the increase of CM loading, the self-quenching problem can be significantly alleviated. The alleviation of self-quenching problem is attributed to the disassociation of non-emission PY aggregates, as evidenced by the results of 2D grazing incidence wide-angle X-ray diffraction (GI-WAXD). The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of PY and CM to molecular level. Comparatively, the degree of enhanced luminescence reaches a maximum at specific mixing ratio and then decreases with the further increase of dispersant loading, suggesting that the perfect mixing ratio can be found so as to significantly alleviate the self-quenching problem. Polarized photoluminescence (PL) spectroscopy and grazing incidence Fourier transform infrared spectroscopy (GI-FTIR) were used to characterize the molecular orientation of PY molecules; the spectroscopic results indicate an anisotropic orientation of PY molecules along the cylindrical direction of nanopores. The anisotropic orientation of PY molecules is attributed to nanoscale spatial effect, suggesting that the induced anisotropy gives rise to the increase of PY emission and its lifetime of the PY molecules. The controlling molecular orientation of PY into nanostructure is important for enhanced luminescence of the pyrene molecules, in particular for the fabrication of device performance.
    In contrast to chromophore molecules, the same pore-filling method (that is the solvent-annealing process) was used to create the ordered conjugated polymer nanoarrays so as to enhance the efficiency of PL. PL results combining with the morphological evolution examined by scanning probe microscopy revealed that the enhanced PL reaches the maximum intensity as the template pores are completely filled by conjugated polymers, similar to the result of the PY molecules. Polarized PL spectroscopy and GI-FTIR were used to examine the chain orientation of templated conjugated polymer; the spectroscopic results indicate a parallel chain orientation along the direction of nanopores. The induced alignment of the conjugated polymer chains is attributed to the nanoscale spatial effect so as to increase the PL intensity and the lifetime of the conjugated polymer. The enhanced luminescence of chromophore or conjugated polymer nanostructure is highly promising for use in designing luminescent nanodevices.


    Abstract………………………………………….……………………………...........І Contents…………………………………………………………………………......V List of Tables ……………………………………………………………………. VIII List of Figures................….......................................................................................IX Chapter 1 Introduction…………………………………………………………..…1 1.1 Self-assembly………………………………………………………….……2 1.2 Development of Nanopatterning Technology………………………………7 1.2.1 Top-down Method…………………………………………………...…8 1.2.2 Button-up Method………………………………………………….…13 1.3 Nanopatterning from Self-assembly of Block Copolymer (BCP) ………..14 1.3.1 Solvent Evaporation-induced Orientation for BCP Self-assembly.......15 1.3.2 Nanoporous Templates from Degradable BCP Nanopatterns ………..17 1.3.3 Pore-filling Process for Nanoporous Template ……………………....20 1.3.3.1 Pore-filling nanoparticles by Solution Wetting…………………...20 1.3.3.2 Pore-filling Polymer by Melt Wetting …........................................22 1.3.3.3 Pore-filling Polymer by Solution Annealing ……………………..24 1.4 Applications of Nanoporous Templates for Semiconductors ……………...26 1.4.1 Quantum Confinement Effect in Semiconductors ……………........…28 1.4.2 Electronic and Optical Properties of CdS Nanocrystals ……...........…29 1.4.3 Applications of CdS Nanostructures ….................................................30 1.5 Nanoporous Templates for Drug Delivery ……….…....…………………..32 1.5.1 Organic Core/shell Nanospheres for Drug Delivery……….................32 1.5.2 Mesoporous Silica Nanoparticles for Drug Delivery…….............…...33 1.5.3 Ionic Membrane for Nanoscale Drug Delivery………………….........34 1.6 Nanoporous Templates for Optical Molecules, Pyrene……………………36 1.6.1 Photophysics of Pyrene Monomer and Excimer...................................36 1.6.2 Pyrene in Organized Media...................................................................38 1.6.3 Applications of Orientated Pyrene Nanostructures...............................39 1.7 Nanoporous Templates for Conjugated Polymers……..…………………..43 1.7.1 Photophysics of Poly(p-phenylenevinylene) (PPV).............................43 1.7.2 Nanosclae Spatial Effect on Oriented Conjugated Polymers...............45 1.7.3 Applications of Segmented PPV Nanostructures.................................47 Chapter 2 Objectives………………………………………………...............……50 Chapter 3 Experimental Methods..........................................................................54 3.1 Instrumentation............................................................................................54 3.2 Experimental Section...................................................................................54 3.2.1 Materials…………………………………………...............................54 3.2.2 Preparation of Nanoporous Templates……………….........................56 3.2.3 Pore-Filling Method by Wetting Effect……………................………56 3.2.4 Pore-Filling Method for Cd(II) by Capillary Force……..................…57 3.2.5 Pore-Filling Method for Sirolimus by Capillary Force…............……58 3.2.6 Pore-Filling of Pyrene and Pyrene/Isochromanone (PY/CM) by Solvent Annealing…………….................................................................…62 3.2.7 Pore-Filling of DP-PPV-PEO by Solvent Annealing ...........................63 Chapter 4 Results and Discussion ………………………………..................……70 4.1 Pore-filling of Gold Particles by Wetting Effect………............................…70 4.2 Pore-Filling Nanoporous Templates for CdS Nanoarrays ….................……75 4.2.1 Pore-Filling of CdS by Air-block Releasing………….................……75 4.2.2 Pore-Filling of CdS by Directed Capillary Force (method 1 & 2)....…77 4.2.3 Optical Properties of Templated Nanocrystals by Air-block Releasing...................................................................……….........................81 4.2.4 Optical Properties of Templated Nanocrystals by Directed Capillary Force (method 1&2)…...................................................................................83 4.3 Pore-Filling Nanoporous Templates for Nanoscale Drug Delivery…...........84 4.3.1 Characterization of Templated Sirolimus Nanoarrays…………......…85 4.3.2 Cumulative Release Profiles of Sirolimus……………………........…88 4.3.3 Mechanism of Diffusion Control for Cumulative Release Profiles......91 4.3.4 Results of Activity Assay of Sirolimus..........................................…...93 4.4 Pore-Filling Nanoporous Templates for PY/CM Nanoarrays on Dispersion.95 4.4.1 Characterization of Templated PY/CM Nanoarrays………………….95 4.4.2 Optical properties of Templated PY/CM Nanoarrays………………...96 4.4.3 Nanoscale Spatial Effect on Dispersion for Templated PY/CM Nanoarrays …...........................................................................................…101 4.5 Pore-Filling Nanoporous Templates for PY and PY/CM Nanoarrays on Molecular Orientation……………………………………………………........107 4.5.1 Characterization and Optical properties of Templated PY/CM Nanoarrays with various mixing ratios..............................................……..107 4.5.2 Induced Molecular Orientation of PY/CM within Nanoporous Template by Nanoscale Spatial Effect.........................................................................113 4.6 Pore-Filling Nanoporous Templates for DP-PPV-PEO (PVE) Nanoarrays.123 4.6.1 Characterization and Optical properties of Templated PVE Nanoarrays....................................................................................................124 4.6.2 Induced Chain Alignment of PPV-PEO within Nanoporous Template by Nanoscale Spatial Effect...............................................................................130 Chapter 5 Conclusions...........................................................................................136 Chapter 6 References .............................................................................................139 Publications………….............................................................................................151 List of Tables Table 3.1 Characteristics of PS-PLLA Block Copolymers.........................................56 Table 3.2 Characteristics of DP-PPV-PEO copolymers ..............................................65 Table 4.1 Loading contents (LC) of cylindrical nanoarrays and lamellar nanoarrays in different thicknesses ....................................................................................................91 Table 4.2 Comparison of the R = A1419/A846 of the GI-FTIR absorbance at 1419 cm-1 and 846 cm-1 for nanoporous PS template on PY/CM thin film with vatious mixing ratios before (Rbefore) and after (Rafter) solvent annealing…………………..............119 List of Figures Figure 1.1 Examples of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micrometersized metallic polyhedra folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces.......3 Figure 1.2 Examples of dynamic self-assembly. (a) An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; microtubules ~ 24 nm in diameter) are colored red. (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inch Petri dish. (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another via vortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1 mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is ~ 2 mm...............................................................................................................4 Figure 1.3 (a) Schematic phase diagram showing the various ‘classical’ BCP morphologies adopted by non-crystalline linear diblock copolymer. The blue component represents the minority phase and the matrix, majority phase surrounds it. (b) Schematic of morphologies for linear ABC triblock copolymer. A combination of block sequence (ABC, ACB, BAC), composition and block molecular weights provides an enormous parameter space for the creation of new morphologies. Microdomains are colored as shown by the copolymer strand at the top, with monomer types A, B and C confined to regions colored blue, red and green, respectively. (Reprinted with permission from Physics Today.12 Copyright (1999) American Institute of Physics)......................................................................................7 Figure 1.4 (a) Topographic nanopattern (b) Chemical nanopattern............................8 Figure 1.5 Photolithography. Outline of the procedures used for fabrication of nanostructures using topographically micropatterned materials. Trenches were formed by selective etching of regions of the substrate protected by disordered SAMs............................................................................................................................9 Figure 1.6 Schematic of metallic mask fabrication processes...................................10 Figure 1.7 An elastomeric stamp is made by casting a prepolymer of PDMS against a master that is usually made by microlithographic techniques. The stamp is inked with a solution of hexadecanethiol in ethanol, dried in a stream of N2, and then brought into contact with the gold surface. The patterned SAMs can be used as resists in wet chemical etching to transfer patterns to the Au film............................12 Figure 1.8 Schematic representation of DPN. A water meniscus forms between the AFM tip coated with ODT and the Au substrate. The size of the meniscus, which is controlled by relative humidity, affects the ODT transport rate, the effective tip-substrate contact area, and DPN resolution..........................................................13 Figure 1.9 SPM phase micrographs of PS-PEO with cylindrical microdomains oriented normal to the film surface are obtained after spin coating onto silicon substrate (a) 25K PS-PEO with a film thickness of 140 nm (b) 90K PS-PEO with film thickness of 150 nm............................................................................................16 Figure 1.10 The Schematic illustration of formation of PS-PLLA nanopattern prepared by spin coating............................................................................................17 Figure 1.11 FESEM image obtained from a thin film of P(S-b-MMA) after removal of the PMMA-block inside the cylinders, a) shows a top view, b) a cross-sectional view............................................................................................................................18 Figure 1.12 (a) Schematic cross-sectional view of a nanolithography template consisting of a uniform monolayer of PB spherical microdomains on silicon nitride. PB wets the air and substrate interfaces. (b) Schematic of the processing flow when an ozonated copolymer film is used, which produces holes in silicon nitride. (c) Schematic of the processing flow when an osmium-stained copolymer film is used, which produces dots in silicon nitride........................................................................19 Figure 1.13 The (a) top view and (b) cross-section view FESEM micrographs of spin-coated PS-PLLA (fPLLAv=0.26) thin films on silicon wafer from chlorobenzene at 50oC after hydrolysis..............................................................................................20 Figure 1.14 (a) Schematic diagram of depositing nanoparticles into nanoporous template by withdrawal of the template from a solution. (b) The photoluminescence of the nanoparticles-filled template demonstrate that a higher solution concentration in the dipping process gives template with higher emission singles..........................22 Figure 1.15 SEM of (A) Damaged tip of a PS nanotube protruding from a porous alumina membrane. (B) Ordered array of tubes from the same PS sample after complete removal of the template. (C) Array of PTFE tubes. (D) PMMA tubes......23 Figure 1.16 TEM images of (a) PAN-based CNTs and (b) PS-b-PAN-based porous CNTs from commercial AAO membrane. (c) WAXD pattern and (d) Raman spectrum of PAN-based CNTs from commercial AAO membrane (d~150–400 nm). The sample was stabilized at 250°C for 30 min under air and pyrolyzed at 600°C for 1 h under nitrogen......................................................................................................26 Figure 1.17 TEM images of Pd/PLA nanotubes after annealed at 200°C for (a) 5min and (b) 24 h. TEM images of Pd nanotubes prepared by annealing at 200°C for (c) 24 h and (d) 48 h within the porous template, and following the removal of PLA polymers. The pore diameters of wetting porous templates are 55 nm, except (c), where the pore diameter is 70 nm..............................................................................26 Figure 1.18 Illustrations representing system dimensionality d: (a) bulk semiconductors, 3D; (b) thin films, layer structures, quantum wells, 2D; (c) linear chain structures, quantum wires, 1D; (d) clusters, colloids, microcrystallites, nanocrystallites, quantum dots, 0D............................................................................28 Figure 1.19 Densities N(E) of states for (a) 3D, (b) 2D, (c) 1D and (d) 0D systems (corresponding to ideal cases)....................................................................................29 Figure 1.20 Absorption spectrum of CdS in aqueous solution: different particle size..............................................................................................................................30 Figure 1.21 TEM micrographs of microtomed sections of PS/CdS composite material showing control of the CdS particle size using PS templates: (a) PS1 (22-nm pore diameter), (b) PS2 (31-nm pore diameter), and (c) PS3 (45-nm pore size template).............................................................................................................31 Figure 1.22 (a) A typical SEM image of drug-loaded TATePEG-b-Chol nanoparticles. (b) release profile of ciprofloxacin lactate from the TATePEG-b-Chol nanoparticles in PBS (pH 7.4) at 37℃.......................................................................33 Figure 1.23 SEM images of titania nanotubular surfaces. Left) Cross-sectional view of mechanically fractured sample showing that the length of the tubes is approximately 400 nm. Center) Top view of nanotubular surface. Right) High-magnification top view of nanotubular surface showing the tube diameter of approximately 80nm...................................................................................................35 Figure 1.24 Fraction of total protein released from nanotubes filled with a) 200, b) 400, and c) 800 mg of BSA, and d) 200, e) 400, and f) 800 mg of LYS. The time point at which all the protein is released is indicated by the dotted line. Concentrations at these time points are significantly different from those for time points before, however, not significantly different from the time points after, p<0.05, n=3.............................................................................................................................36 Figure 1.25 Schematic potential energy diagrams for pyrene excimer formation in the absence of ground-state association (a) and with pyrene ground state association (b)...............................................................................................................................38 Figure 1.26 (a) Chemical structure of TQPP-12. Axes define transition dipole orientation, which is discussed in the later IR spectroscopy analysis. (b) TQPP-12 based on semiempirical (AM1) Hamiltonian calculation. Side chains are fully extended from core.....................................................................................................41 Figure 1.27 GIXD of M1 film. The primary out-of-plane (001) reflection is blocked by the beam stop of the instrument............................................................................41 Figure 1.28 (a) SEM image of the inter-digitated Au finger electrodes on SiO2/Si substrate. (b) the height and cross-sectional images of PYPA polycrystalline films. (c) Schematic illustration of the proposed PYPA orientation in spin-coated films. The layer adjoining the hydrophilic substrate is the phosphonic acid headgroup, and the one exposed to air is the pyrene endgroup. Inset: Molecular structure of PYPA.......42 Figure 1.29 Plot of a drain current IDS versus drain voltage VDS at various gate voltages VG from a bottom-contact OFET comprising the PYPA polycrystalline stacked film at 230 K. The gap width between the electrodes is 400 nm..................43 Figure 1.30 Schematic diagram of the structure of the PPV photodiodes.................44 Figure 1.31 SEM micrograph (a) and AFM image (b) of the rubbed PPV layer (30 nm) on glass/ITO/PPV(120nm).................................................................................46 Figure 1.32 a) Polarized electroluminescence from a two-layer OLED with the configuration ITO/PPV (120 nm)/rubbed PPV (30 nm)/tBu-PPQ (30 nm)/Al. b) I±V characteristics and brightness of the device...............................................................46 Figure 1.33 Mechanism of P3HT chain alignment due to polymer flow and interaction between P3HT side chain.........................................................................47 Figure 1.34 SEM images of PPV after being isolated from the filters: nanorods prepared in a polycarbonate filter membrane with nominal diameter of 10 nm........49 Figure 1.35 PL decays of bands 1, 2, and S in bulk PPV film and nanotubes referred to as nt1 and nt2 in the text. (a) Band 2-film; (b) band 1-film; (c) band 2-nanotube nt1; (d) band 1-nanotube nt1; (e) band S-nanotube nt1; (f) band S-nanotube nt2. Zero-time delay corresponds to the beginning of the streak camera sweep..........................................................................................................................49 Figure 3.1 Schematic illustration of pore-filling processes by (a) air-block releasing, (b) directed capillary force (method 1), and (c) directed capillary force (method 2)................................................................................................................................58 Figure 3.2 Schematic illustration of pore-filling process by directed capillary force. (a) PS-PLLA thin film; (b) PS nanoporous template from hydrolytic PS-PLLA thin film; (c) PS nanoporous template floated onto the surface of solution for pore-filling sirolimus; (d) templated sirolimus nanoarrays from pore-filling template................60 Figure 3.3 Schematic illustration of nanoporous PS template pore-filled by optical materials through solvent-annealing process. (a) PS-PLLA thin film; (b) nanoporous PS template from PS-PLLA thin film after hydrolysis; (c) nanoporous PS template floated on water surface and collected by optical materials coated glass slide; (d) nanoporous PS template on optical materials film coated glass slide for solvent-annealing process; (e) templated optical materials nanoarrays after solvent-annealing process..........................................................................................63 Figure 4.1 The tapping-mode SPM height images of the nanopatterning morphology for spin-coated PS–PLLA thin films on glass slide at ambient temperature (a) before; (b) after hydrolysis.....................................................................................................71 Figure 4.2 TEM mass-thickness images of hydrolyzed PS-PLLA templates immersed into Au solution (a) without and (b) with ultrasonic treatment for 30 min..............................................................................................................................71 Figure 4.3 TEM micrographs of pore-filling functional gold nanoparticles in hydrolyzed PS-PLLA templates after O2 plasma treatment with 75 Watt for 20 seconds.......................................................................................................................73 Figure 4.4 (a) The tapping-mode SPM height image of PS-PLLA template after hydrolysis 4 days and RuO4 staining for 30s. (b) Measured Contact angle image of H2O on stained PS template before and after RIE treatment with 20 Watt for 20 seconds.......................................................................................................................74 Figure 4.5 TEM micrographs of pore-filling functional gold nanoparticles in hydrolyzed PS-PLLA templates after O2 plasma treatment with 20 Watt and RuO4 staining for 30 seconds...............................................................................................74 Figure 4.6 (a) Air-extracting apparatus (b) Measured Contact angle image of H2O and methanol on PS templates...................................................................................76 Figure 4.7 (a) TEM image of CdS nanocrystals into hexagon cylinder (HC) template by air-block releasing. (b) Electron-diffraction pattern of the CdS particles.............77 Figure 4.8 TEM images of nanoporous template generated from cylindrical PS-PLLS diblock copolymer thin film. After pore-filling of CdAc2 by directed capillary force and surface washing, the HC CdS structure was achieved by adding equivalent amounts of H2S for 2 hr from (a) methanol solvent; (b) aqueous solvent. Inset shows the electron diffraction pattern of the CdS nanoparticles.......................80 Figure 4.9 TEM images of templated CdS nanoarrays through pore-filling processes by directed capillary force (method 2). Inset shows the selected area electron diffraction pattern from the central region of the sample...........................................80 Figure 4.10 TEM image of CdS nanoparticles by spin coating of 0.48M CdAc2 methanol solution and exposing to H2S vapor for 2 hours........................................82 Figure 4.11 PL spectra of CdS solid state and templated CdS through pore-filling processes by air-block releasing and directed capillary force (method 2). The exciting length is at 450 nm. Inset shows corresponding UV-vis absorption spectra........................................................................................................................82 Figure 4.12 Confocal microscopy image (excited at 454nm and detected from 480nm to 700nm) of (a) CdS solid state; (b) pore-filling of CdS into nanoporous template by air-block releasing; (c) pore-filling of CdS into nanoporous template by direct capillary force (method 2)................................................................................84 Figure 4.13 TEM images of (a) PS cylindrical nanoporous template from hydrolytic PS-PLLA film; (b) templated sirolimus-loaded cylindrical nanoarrays from pore-filling template; (c) PS lamellar nanoporous template from hydrolytic PS-PLLA film; (b) templated sirolimus-loaded lamellar nanoarrays from pore-filling template......................................................................................................................86 Figure 4.14 TEM images of PTA staining samples: (a) PS nanoporous template from hydrolytic PS-PLLA film; (b) templated sirolimus nanoarrays from pore-filling template......................................................................................................................87 Figure 4.15 FTIR spectra of templated sirolimus-loaded cylindrical nanoarrays before (dash dot line) and after (dot line) drug eluting. The solid line reveals the spectrum of pure sirolimus.........................................................................................88 Figure 4.16 (a) Cumulative release profiles of sirolimus from the sirolimus-loaded cylindrical nanoarrays (blue triangle), the sirolimus-loaded lamellar nanoarrays (green diamond), the AAO/sirolimus hybrids (black circle) and the PS/drug blends (red square). Inset shows the fitting curve (black line) of the sirolimus-loaded cylindrical nanoarrays. Minf : the infinite amount of loaded drugs in test templates; Mt: the cumulative amount of drug released at time t. (b) Schematic illustration of the sirolimus-loaded cylindrical nanoarrays, the AAO/sirolimus hybrids and the PS/drug blends...........................................................................................................89 Figure 4.17 SPM topography images of PS/drug blended matrix by (a) before and (b) after drug eluting process...........................................................................................89 Figure 4.18 Cumulative release profiles of sirolimus released from test nanoarrays in different thicknesses...............................................................................................91 Figure 4.19 Results of activity assay of sirolimus released from cylindrical or lamellar nanoarrays. Fluorescence microscopic images, showing viability of RASMC following treatment for three days with (a) fresh medium or collected medium that contained the sirolimus that was released from the (b) cylindrical or (c) lamellar nanoarrays....................................................................................................94 Figure 4.20 TEM images of (a) cylindrical nanoporous PS template from hydrolytic PS-PLLA thin film; (b) templated PY/CM nanoarrays with PTA staining................96 Figure 4.21 FL spectra of spin-coated PY/CM thin films on glass substrate (a) with; (b) without the deposition of nanoporous PS template before (solid line) and after (dot line) solvent annealing. Inset of (b) shows the enlarged scale of dot-line spectrum.....................................................................................................................97 Figure 4.22 (a) FE-SEM image of templated PY/CM with cylindrical texture after removal of AAO membrane; (b) FL spectra of solution-cast polymer film on glass substrate with the deposition of AAO membrane before (solid line) and after (dash line) solvent annealing; (c) Schematic illustration of the solution-cast polymer film on glass substrate with the deposition of AAO membrane before and after solvent annealing..................................................................................................................100 Figure 4.23 (a) FL spectra of templated PY/CM nanoarrays through solvent-annealing at different annealing times. Inset shows the plot of the intensity of monomer emission (378nm) versus annealing time. (b) SPM tapping-mode height images of nanoporous PS template on spin-coated PY/CM thin film at different solvent-annealing times. The scale of the SPM image is 1μm × 1μm. (c) Schematic illustration of the morphological evolution of pore-filling PY/CM.........................101 Figure 4.24 UV spectra of (a) spin coated 1wt% PY thin film, (b) nanoporous PS template on PY/CM film coated glass slide before solvent-annealing process and (c) templated PY/CM nanoarrays after solvent-annealing process...............................103 Figure 4.25 (a) ATR-FTIR spectra and (b) GI-WAXD of spin-coated PY thin film (dash line), nanoporous PS template on PY/CM thin film (dot line) and templated PY/CM nanoarrays (solid line). Inset of (a) shows the enlarged scale of spectrum from 2900 to 2950 cm-1............................................................................................103 Figure 4.26 Wide-angle X-ray diffraction patterns of drop casting of (a) PY film and (b) CM film..............................................................................................................106 Figure 4.27 Schematic illustration of molecular dispositions for spin-coated PY/CM film before solvent annealing and templated PY/CM nanoarrays...........................106 Figure 4.28 TEM images of templated (a) PM1; (b) PM4; (c) PM10 and (d) PM20 nanoarrays with PTA staining..................................................................................108 Figure 4.29 PL spectra of nanoporous PS templates on spin-coated (a) PM1; (b) PM4; (c) PM10 and (d) PM20 thin films for different solvent-annealing times. Insets show the plot of the intensity of first peak (378 nm, square line) and excimer peak (493nm, circle line) versus different annealing time................................................110 Figure 4.30 2D GI-WAXD patterns of nanoporous PS templates on spin-coated (a) PM4 and (b) PM10 thin films before solvent-annealing times (annealing for 0hr); templated (c) PM4 and (d) PM10 nanoarrays (annealing for 24hr).........................112 Figure 4.31 (a) Normalized PL spectra of templated PY/CM nanoarrays with different mixing ratio. Insets show the plot of the PL integrated area (A) versus different mixing ratio. (b) The plot shows the comparison of the PL integrated area, R=Aafter/Abefore for nanoporous PS template on PY/CM thin film with different mixing ratio before solvent annealing (Abefore) and the formation of templated PY/CM nanoarrays (Aafter)........................................................................................113 Figure 4.32 Polarized PL spectra of nanoporous PS templates on spin-coated (a) PM1; (b) PM4; (c) PM10 and (d) PM20 thin films before solvent-annealing times (annealing for 0hr); templated (e) PM1; (f) PM4; (g) PM10 and (h) PM20 nanoarrays (annealing for 24hr). The spectra were acquired under conditions of vertically polarized excitation with vertically (VV, solid line) or horizontally (VH, dot line) polarized collection. Insets show the plot of DRE versus annealing time…………………………………………………………………………...........115 Figure 4.33 Polarized PL spectra of spin-coated (a), (b)PM1 and (c), (d) PM10 thin films for different solvent-annealing times; (a) and (c) corresponding to the annealing time for 0 hr; (b) and (d) corresponding to the annealing time for 24 hr. The spectra were acquired under conditions of vertically polarized excitation with vertically (VV, solid line) or horizontally (VH, dot line) polarized collection........116 Figure 4.34 GI-FTIR spectra of (a) nanoporous PS templates, (b) spin-coated PY thin film, (c) spin-coated CM thin film and (d) spin-coated PM4 thin film on gold substrate....................................................................................................................117 Figure 4.35 GI-FTIR spectra of nanoporous PS template on different mixing ratio (a) PM1; (b) PM4; (c) PM10 and (d) PM20 thin film before solvent annealing (solid line) and the formation of templated PY/CM nanoarrays after solvent annealing (dash line)...........................................................................................................................119 Figure 4.36 PL decay of different mixing ratio (a) PM1; (b) PM4; (c) PM10 and (d) PM20 thin films on glass substrate with the deposition of nanoporous PS template before (solid line) and after (dash line) solvent annealing.......................................120 Figure 4.37 PL decay of spin-coated PM1 thin film on glass substrate before (solid line) and after (dash line) solvent annealing............................................................121 Figure 4.38 PL decay spectra of spin-coated PM1 thin film on glass substrate with the deposition of nanoporous PS template for different solvent annealing times....121 Figure 4.39 Schematic illustration of molecular orientation for (a) spin-coated 1wt% PY thin film; nanoporous PS templates on spin-coated (b) PM4 and (c) PM20 thin films before solvent annealing; templated (d) PM4 and (e) PM20 nanoarrays.......122 Figure 4.40 TEM images of templated (a) PVE3; (b) PVE7 nanoarrays with PTA staining.....................................................................................................................126 Figure 4.41 PL spectra of spin-coated PVE3 and PVE7 thin films on glass substrate (a), (c) with; (b), (d) without the deposition of nanoporous PS template before (solid line) and after (dot line) solvent annealing for 48hr.................................................126 Figure 4.42 PL spectra of nanoporous PS templates on spin-coated (a) PPV3 and (c) PPV7 thin films for different solvent-annealing times. Insets show the plot of the intensity of first peak (498 nm) versus annealing time. SPM tapping-mode height images of nanoporous PS templates on spin-coated (b) PPV3 and (d) PPV7 thin films for different solvent-annealing times. The scale of the SPM image is 2μm × 2μm...........................................................................................................................128 Figure 4.43 The surface profile along the line in SPM tapping-mode height images of nanoporous PS templates on spin-coated (b) PPV3 and (d) PPV7 thin films for different solvent-annealing times.............................................................................129 Figure 4.44 Schematic illustration of the morphological evolution of pore-filling PVE..........................................................................................................................129 Figure 4.45 Polarized PL spectra of nanoporous PS templates on spin-coated (a), (b) PPV3 and (c), (d) PPV7 thin films for different solvent-annealing times; (a) and (c) corresponding to the annealing time at 0 hr; (b) and (d) corresponding to the annealing time at 48 hr. The spectra were acquired under conditions of vertically polarized excitation with vertically (VV, solid line) or horizontally (VH, dot line) polarized collection. Insets show the plot of DRE versus annealing time................131 Figure 4.46 GI-FTIR spectra of nanoporous PS templates on spin-coated (a) PPV3 and (b) PPV7 thin films for different solvent-annealing times. Insets show the comparison of the R = A3060/A842 of the GI-FTIR absorbance at 3060 cm-1 and 842 cm-1 for different annealing time..............................................................................134 Figure 4.47 PL decay spectra of nanoporous PS template on spin-coated (a) PPV3 and (c) PPV7 thin film before (solid line) and after (dot line) solvent annealing time for 48hr.....................................................................................................................134 Figure 4.48 PL decay spectra of nanoporous PS template on spin-coated (a) PPV3 and (c) PPV7 thin films for different solvent annealing times.................................134 Figure 4.49 Schematic conformation model of GI-FTIR results for spin-coated PVE film with random chain orientation and anisotropic polymer chains along the direction of cylindrical nanopores after solvent annealing......................................135

    Chapter 6
    References

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
    8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
    10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Black, A. J.; Paul, K. E.; Aizenberg, J.; Whitesides, G. M. J. Am. Chem. Soc. 1999, 121, 8356-8365.
    18. Hatzakis, M. J. Electrochem. Soc. 1969, 116, 1033.
    19. Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
    20. Rai-Choudhury, P. Handbook of microlithography, micromachining, and microfabrication SPIE Optical Engineering Press, 1997.
    21. Duan, H.; Zhao, J.; Zhang, Y.; Xie, E.; Han, L. Nanotechnology, 2009, 20, 135306.
    22. Zhao, X. -M.; Xia, Y.; Whitesides, G. M. J. Mater. Chem. 1997, 7, 1069.
    23. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550.
    24. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
    25. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
    26. Ringger, M.; Hidber, H. R.; Schlogel, R.; Oelhafen, P.; Guntherodt, H. J. Appl. Phys. Lett. 1985, 46, 832.
    27. Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Guntherodt, H. J. Appl. Phys. Lett. 1987, 51, 244.
    28. Abraham, D.; Mamin, H.; Ganz, E.; Clarke, J. IBM J. Res. Dev. 1986, 30, 492.
    29. Dagata, J. A.; Schneir, J. H.; Harary, H.; Evans, C. J.; Postek, M. T.; Bennett, J. Appl. Phys. Lett. 1990, 56, 2001.
    30. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661.
    31. Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 30.
    32. Tseng, A. A.; Notargiacomo, A.; Chen, T. P. J. Vac. Sci. Technol. B 2005, 23, 877.
    33. Hyde S, Anderson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham BW. The language of shape. New York: Elsevier; 1997.
    34. Ball P. Made to Measure. Biomaterials, 1997. New York, Chapter 4, Only natural.
    35. Rapaport H, Moller G, Knobler CM, Jensen TR, Kjaer K, Leiserowitz L, Tirrell DA. J Am Chem Soc 2002, 124, 9342.
    36. van Dijk, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773.
    37. Lin, Z.; Kim, D. H..; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
    38. Rong-Ming Ho, Wen-Hsien Tseng, Hui-Wen Fan, Yeo-Wan Chiang, Chu-Chieh Lin, Bao-Tsan Ko, Bor-Han Huang. Polymer, 2005, 46, 9362.
    39. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787–791.
    40. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657–3659.
    41. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401–1404.
    42. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519–1520.
    43. Yin, Y.; Lu, Y.; Gates, B.; Xia, Y. J. Am. Chem. Soc. 2001, 123, 8718-8729.
    44. Cui, Y.; Bjork, M. T.; Liddle, J. A.; Sonnichsen, C.; Boussert, B.; Alivisatos, A. P. Nano Lett. 2004, 4, 1093-1098.
    45. Misner, M. J.; Skaff, H.; Emrick, T.; Russell, T. P. Adv. Mater. 2003, 15, 221-224.
    46. Fox, H.W.; Hare, E. F.; Zisman, W. A. J. Phys. Chem. 1955, 59, 1097.
    47. Myers, D. in Surfaces, Interfaces, and Colloids, Wiley-VCH, New York, 1999.
    48. Wu, S. in Polymer Interfaces and Adhesion, Marcel Dekker, New York, 1982.
    49. de Gennes, P. G. Rev. Mod. Phys. 1985, 57, 827.
    50. Leger, L.; Joanny, J. F. Rep. Prog. Phys. 1992, 55, 431.
    51. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997.
    52. Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M. F.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476.
    53. Doneet, J. B.; Bansal, R. C. in Carbon Fibers: International Fiber Science and Technology 3 Marcel Dekker, New York 1984.
    54. Steinhart, M.; Jia, Z. H.; Schaper, A. K.; Wehrspohn, R. B.; Gosele, U.; Wendorff, J. H. Adv. Mater. 2003, 15, 706.
    55. 功能性金及硫化鎘奈米粒子:合成、排列與物理性質之研究, 施勝銘, 臺灣大學材料科學與工程學研究所博士論文.
    56. Trindade, T.; O'Brien, P.; Pickett, N. L.; Chem. Mater. 2001, 13, 3843.
    57. Pankive, J. I. Optical processes in semiconductors; Dover Publications Inc.: New York, 1970.
    58. Yoffe, A. D. Adv. Phys. 1993, 42, 173.
    59. Henglein, A. Chem. Rev. 1989,89,1861
    60. bawendi, M. G.; Steigerwald, M. L.; brus, L. E. Annu. Rev. Phys. Chem. 1993, 41, 477.
    61. Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41.
    62. Weller, H. Adv. Mater. 1993, 5, 88.
    63. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    64. Forster, S.; Antonietti, M., Adv. Mater. 1998, 10,195
    65. Wang, C. W. ; Moffitt, G. Langmuir 2004, 20, 11784.
    66. Rzayev, J.; Hillmyer, M. A. Macromolecules 2005, 38, 3-5.
    67. Johnson, B. J. S.; Wolf, J. H.; Zalusky, A. S.; Hillmyer, M. A. Chem. Mater. 2004, 16, 2909-2917.
    68. Zhu, B.; Zhang, Q.; Lu, Q.; Xu, Y.; Yin, J.; Hu, J.; Wang, Z. Biomaterials 2004, 25, 4215-4223.
    69. Nuhrenberg, T. G.; Voisard, R.; Fahlisch, F.; Rudelius, M.; Braun, J.; Gschwend, J.; Kountides, M.; Herter, T.; Baur, R.; Hombach, V.; Baeuerle, P. A.; Zohlnhofer, D. FASEB J. 2004, 18, 246
    70. Pinchuk, L.; Wilson, G. J.; Barry, J. J.; Schoephoerster, R. T.; Parel, J. M.; Kennedy, J. P. Biomaterials 2008, 29, 448-460.
    71. Liu L.; Guo K.; Lu J.; Venkatraman S. S.; Luo D.; Ng K. C.; Ling E. A.; Moochhala S.; Yang Y. Y. Biomaterials, 2008, 29, 1509-1517.
    72. Lee C. H.; Lo L. W.; Mou C. Y.; Yang C. S. Adv. Funct. Mater. 2008, 18, 3283-3292.
    73. Popat, K. C.; Eltgroth, M.; LaTempa, T. J.; Grimes, C. A.; Desai, T. A. Biomaterials 2007, 28, 4880-4888.
    74. Popat, K. C.; Eltgroth, M.; La Tempa, T. J.; Grimes, C. A.; Desai, T. A. Small 2007, 3, 1878-1881
    75. Winnik, F. M. Chem. Rev. 1993, 93, 587-614.
    76. Birks, J. B. Excimers Rep. PRog. Phys. 1975, 38, 903–974.
    77. Birks, J. B.; Christophorou, L. G. Spectrochim. Acta 1963, 19, 401–410
    78. Birks, J. B.; Lumb, M. D.; Munro, I. H. 1963, 275, 575–588
    79. Wilhelm, M.; Zhao, C. L.; Wang, Y. C.; Xu, R. L.; Winnik, M. A.; Mura, J. L.; Riess, G.; Croucher, M. D.. Macromolecules, 1981, 24, 1033–1040
    80. Jhaveri S. B.; Beinhoff M.; Hawker C. J.; Carter K. R.; Sogah D. Y. ACS Nano 2008, 2, 719-727
    81. Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47, 5175–5178.
    82. Birks, J. B. Photophysics of Aromatic Molecules; John Wiley: New York, NY, 1970; Chapter 7
    83. Robertson, J. M.; White, J. G. J. Chem. Soc. 1947, 358–368.
    84. Camerman, A.; Trotter, J. Acta Cryst. 1965, 18, 636–643.
    85. Anghel, D. F.; Alderson, V.; Winnik, F. M.; Misuzaki, M.; Morishima, Y. Polymer 1998, 39, 3035–3044.
    86. Dutta, A. K.; Misra, T. N. Langmuir 1996, 12, 459–465.
    87. Matsui, J.; Mitsuishi, M.; Miyashita, T. J. Phys. Chem. B 2002, 106, 2468–2473.
    88. Labbe, P.; Reverdy, G. Langmuir 1988, 4, 419–425.
    89. Bohne, C.; Abuin, E. A.; Scaiano, J. C. Langmuir 1992, 8, 469–474.
    90. Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039–2044.
    91. Ellison, C. J.; Torkelson, J. M. J. Polym. Sci.: Part B: Polym. Phys. 2002, 40, 2745–2758
    92. Martins, T. D.; Yamaki, S. B.; Prado, E. A.; Atvars, T. D. Z. J. Photochem. Photobiol. A: Chem. 2003, 156, 91–103.
    93. Winnik, M. A.; Redpath, A. E. C.; Richards, D. H. Macromolecules 1980, 13, 328–335.
    94. Winnik, M. A.; Redpath, A. E. C.; Paton, K.; J. Danhelka Polymer 1984, 25, 91–99.
    95. Xia, R.; Lai, W. Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. C. Adv. Funct. Mater. 2009, 19, 2844–2850
    96. Zhao, Z.; Li, J. H.; Chen, X.; Lu, P.; Yang, Y. Org. Lett., 2008, 10, 3041-3044
    97. (a) Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520–1521. (b) Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47, 5175–5178. (c) Sagara, Y.; Yamane, S.; Mutai, T.; Araki, K.; Kato, T. Adv. Funct. Mater. 2009, 19, 1869–1875 (d) Sagara, Y.; Kato, T. Nature Chem. 2009, 1, 605-610
    98. (a) Wang, D.; Schlegel, J. M.; Galoppini, E. Tetrahedron 2002, 58, 6027-6032. (b) Hoertz, P. G.; Carlisle, R. A.; Meyer G. J.; Wang D.; Piotrowiak, P.; Galoppini, E. Nano Lett. 2003, 3, 325-330. (c) Taratula, O.; Rochford, J.; Piotrowiak, P.; Galoppini, E.; Carlisle, R. A.; Meyer, G. J. J. Phys. Chem. B 2006, 110, 15734-15741
    99. (a) Oh, H.; Kim, J.; Kim, E. Macromolecules 2008, 41, 7160-7165; (b) van, M. G.; Scaiano, J. C.; Chem. Mater. 2009, 21, 3933–3940.
    100. K. R. J. Thomas, J. T. Lin, Y.-T. Tao, C.-W. Ko, Adv. Mater. 2000, 12, 1949.
    101. S. Tao, Z. Peng, X. Zhang, P. Wang, C.-S. Lee, S.-T. Lee, Adv. Funct. Mater. 2005, 15, 1716.
    102. Yip, H. L.; Ma, H.; Jen, A. K.-Y.; Dong, J.; Parviz, B. A. J. Am. Chem. Soc. 2006, 128, 5672–5679.
    103. Lucas, L. A.; DeLongchamp, D. M.; Richter, L. J.; Kline, R. J.; Fischer, D. A.; Kaafarani, B. R.; Jabbour, G. E. Chem. Mater. 2008, 20, 5743–5749.
    104. Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. J. Am. Chem. Soc. 2009, 131, 18177–18185.
    105. D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, J. C. Hummelen, D. Badt, H. Schindler, N. S. Sariciftci, Synth. Met. 2001, 118, 1.
    106. H. Hoppe, N. S. Sariciftci, J. Mater. Res. 2004, 19, 1924.
    107. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
    108. B. S. Ong, Y. L. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 2004, 126, 3378.
    109. T. L. Benanti, D. Venkataraman, Photosynth. Res. 2006, 87, 73.
    110. A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao, Y. Xia, Mater. Today 2008, 11, 38.
    111. G. Gustafsson, O. Inganas, S. Stafstrom, Solid State Commun. 1990, 76, 203.
    112. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature (London) 1990, 347, 539.
    113. R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.: Condens. Matter 1994, 6, 1379.
    114. G. Duda, A. J. Schouten, T. A. Arndt, G. Lieser, G. F. Schmidt, C. Bubeck, G. Wegner, Thin Solid Films 1988, 159, 221.
    115. R. H. G. Brinkhuis, A. J. Schouten, Macromolecules 1992, 25, 2717.
    116. T. Sauer, T. Arndt, D. Batchelder, A. A. Kalachev, G. Wegner, Thin Solid Films 1990, 187, 357.
    117. M. Jandke, P. Strohriegl, J. Gmeiner, W. Bru‥tting, M. Schwoerer, Adv. Mater. 1999, 11, 1518.
    118. M. Aryal, K. Trivedi, W. C. Hu, ACS Nano, 2009, 3, 3085.
    119. B. Frank, A. P. Gast, T. P. Russell, H. R. Brown, C. J. Hawker, Macromolecules, 1996, 29, 6531.
    120. X. Zheng, B. B. Sauer, J. G. Van Alsten, S. A. Schwarz, M. H. Rafailovich, J. Sokolov, M. Rubinstein, Phys. Rev. Lett. 1995, 74, 407.
    121. R. L. Jones, S. K. Kumar, D. L. Ho, R. M. Briber, T. P. Russell, Nature, 1999, 400, 146.
    122. K. Shin, S. Obukhov, J. T. Chen, J. Huh, Y. Hwang, S. Mok, P. Dobriyal, P. Thiyagarajan, T. P. Russell, Nature Mater. 2007, 6, 961.
    123. H. R. Brown, Science 1994, 263, 1411.
    124. K. Y. Suh, H. H. Lee, Adv. Mater. 2001, 13, 1386.
    125. K. Shin, H. Q. Xiang, S. I. Moon, T. Kim, T. J. McCarthy, T. P. Russell. Science 2004, 306, 76.
    126. M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
    127. D. O'Carroll, D. Iacopino, A. O'Riordan, P. Lovera, E. O'Connor, G. A. O'Brien, G. Redmond, Adv. Mater. 2008, 20, 42.
    128. Kim K.; Jin J. I. Nano Lett. 2001, 1, 631.
    129. Kim K., Kim B. H., Joo S. H., Park J. S., Joo J., Jin J. I. Adv. Mater. 2005, 17, 464.
    130. F. Massuyeau, J. L. Duvail, H. Athalin, J. M. Lorcy, S. Lefrant, J. W’ery, E. Faulques, Nanotechnology, 2009, 20, 155701.
    131. B. T. Ko, C. C. Lin, J. Am. Chem. Soc. 2001, 123, 7973.
    132. R. M. Ho, Y. W. Chiang, C. C. Tsai, C. C. Lin, B. T. Ko, B. H. Huang, J. Am. Chem. Soc. 2004, 126, 2704.
    133. Steinhart M.; Wendorff J. H.; Greiner A.; Wehrspohn R. B.; Nielsch K.; Schilling J.; Choi J.; Gosele U. Science 2002, 296, 1997.
    134. Steinhart M.; Wehrspohn R. B.; Gosele U.; Wendorff J. H. Angew. Chem. Int. Ed. 2004, 43, 1334-1344.
    135. Chen, M. C.; Liang, H. F.; Chang, Y.; Chiu, Y. L.; Wei, H. J.; Sung, H. W. J. Controlled. Release 2005, 108, 178-189
    136. Kretsinger J. K.; Haines L. A.; Ozbas B.; Pochan D. J.; Schneider J. P. Biomaterials 2005, 26, 5177-5186.
    137. Traill, R. J.; Boyle, R. W. Am. Mineral. 1955, 40, 555.
    138. Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J. Phys. Chem. 1996, 100, 14037-14047.
    139. Zhang, Q.; Gupta, S.; Emrick, T.; Russell, T. P. J. Am. Chem. Soc. 2006, 128, 3898-3899.
    140. Rossetti, R.; Hull, R.; Gibson, J. M.; Brus, L. E. J. Chem. Phys. 1985, 82, 552-559.
    141. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761–12773.
    142. Yung, K. L.; Kong, J.; Xu, Y. Polymer 2007, 48, 7645–7652.
    143. Siepmann, J.; Peppas, N. A. Adv. Drug Delivery Rev. 2001, 48, 139–157.
    144. Peng, L.; Mendelsohn, A. D.; LaTempa, T. J.; Yoriya, S.; Grimes, C. A.; Desai, T. A. Nano Lett. 2009, 9, 1932–1936.
    145. Marx, S. O.; Jayaraman, T.; Go, L. O.; Marks, A. R. Circ. Res. 1995, 76, 412–417.
    146. Fukuda, J.; Khademhosseini, A.; Yeo, Y.; Yang, X.; Yeh, J.; Eng, G.; Blumling, J.; Wang, C. F.; Kohane, D. S.; Langer, R. Biomaterials 2006, 27, 5259–5267.
    147. Cuomoa, F.; Palazzob, G.; Cegliea, A.; Lopeza, F. J. Photochem. Photobiol. A. chem. 2009, 202, 21–27.
    148. Lo K. H.; Chen M. C.; Ho, R. M.; Sung, H. W. ACS Nano, 2009, 3, 2660–2666.
    149. Tseng, Y. T.; Tseng, W. H.; Lin, C. H.; Ho, R. M. Adv. Mater. 2007, 19, 3584-3588.
    150. Kunjappu, J. T.; Somasundaran, P. Langmuir 1995, 11, 428–432.
    151. Dutta, A. K.; Misra, T. N.; Pal, A. J. Langmuir 1996, 12, 459–465.
    152. Dischler, B.; Bubenzer, A.; Koidl, P. Solid State Commun. 1983, 48, 105–108.
    153. Dischler, B.; Bubenzer, A.; Koidl, P. Appl. Phys. Lett 1983, 42, 636–638.
    154. Hobza, P.; Spirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501–2504.
    155. Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Spirko, V.; Hobza, P. J. Phys. Chem. A 2001, 105, 5560–5566.
    156. Winnik, F. M.; Regismond, S. T. A.; Goddard, E. D. Langmuir 1997, 13, 111–114.
    157. An, B. K.; Kwon, S. K.; Jung, S. J.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410–14415.
    158. S. J. Chung, J. I Jin, C. H. Lee, C. E. Lee, Adv. Mater. 1998, 9, 684.
    159. T. C. Wang, H. Y. Hsueh, R. M. Ho, Chem. Mater. 2010, 22, 4642.
    160. N. B. Colthup, , L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy; Academic Press, New York, 1964.
    161. D. D. C. Bradley, R. H. Friend, H. Lindenberger, S. Roth, Polymer 1986, 27, 1709.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE