研究生: |
Christopher Jay T. Robidillo |
---|---|
論文名稱: |
Carbohydrate-Encapsulated Gold Nanoparticles as Multivalent Platforms for Probing Carbohydrate-Protein Interactions |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
陳家俊
張大慈 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 168 |
中文關鍵詞: | 凝集素 、表面電漿共振 、醣功能化金奈米粒子 、多價性 |
外文關鍵詞: | lectin, surface plasmon resonance, carbohydrate-encapsulated gold nanoparticles, multivalency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Carbohydrate-protein interactions mediate a wide range of important normal and pathological biological processes. These processes include cellular communication and differentiation, viral and bacterial infection, and the immune response. The ability to influence and interfere with these interactions offers a great opportunity in the study of the biochemistry of these processes with the ultimate goal of preventing and providing cure for certain diseases. However monovalent carbohydrates only show weak affinity to protein targets. This limitation is overcome by the design and implementation of multivalent biomaterials that present multiple copies of the sugar to the protein. The resulting interaction between multivalently presented sugar residues and proteins is generally stronger than the sum of each individual interaction. This phenomenon, referred to as the cluster-glycoside effect, is how nature compensates for the relatively weak interaction between monovalent carbohydrates and proteins. This study reports the use of gold nanoparticles (AuNPs) as effective platforms for the multivalent presentation of carbohydrates. AuNPs of approximately 13-nm diameter encapsulated with galactose, lactose, and Pk antigen were prepared from thiolated carbohydrates and citrate-stabilized AuNPs. These carbohydrate-encapsulated gold nanoparticles (c-AuNPs) were then used as multivalent inhibitors of adsorption of a set of lectins (RCA120, Jacalin, cholera toxin, and PA-I) on carbohydrate-coated gold chips in a Surface Plasmon Resonance (SPR) Inhibition assay. The assay provided inhibition constants (Ki), and other multivalent parameters such as Relative Inhibition Avidity (RIA) and Relative Inhibition Potency (RIP) for the c-AuNPs. The nanoparticles were found to have subnomolar affinities to the lectins and toxin and compare well with reported multivalent inhibitors. The affinities and multivalent enhancement exhibited by the sugars presented on the AuNPs varied from relatively small to large and depended on both the nature of the carbohydrate used and the characteristics of the protein assayed. This study demonstrated that the AuNPs are efficient multivalent platforms for exploring the cluster glycoside effect and that the c-AuNPs are promising inhibitors of the bacterial infection-associated proteins cholera toxin and PA-I, and the ricin surrogate RCA120.
1. Nomenclature Committee of IUB (NC-IUB) and IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Newsletter 1981. Eur. J. Biochem. 1981, 114, 1-4.
2. (a) Sharon, N.; Lis, H., Lectins as cell recognition molecules. Science 1989, 246, 227-234; (b) Lis, H.; Sharon, N., Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition†. Chem. Rev. 1998, 98, 637-674; (c) Drickamer, K., C-type lectin-like domains. Curr. Opin. Struc. Biol. 1999, 9, 585-590; (d) Rini, J. M.; Lobsanov, Y. D., New animal lectin structures. Curr. Opin. Struc. Biol. 1999, 9, 578-584; (e) Vijayan, M.; Chandra, N., Lectins. Curr. Opin. Struc. Biol. 1999, 9, 707-714; (f) Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97-130; (g) Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. Science 2001, 291, 2357-64.
3. Wu, A. M.; Sugii, S. J.; Herp, A., A guide for carbohydrate specificities of lectins. Adv. Exp. Med. Biol. 1988, 228, 819-47.
4. Wu, A.; Lisowska, E.; Duk, M.; Yang, Z., Lectins as tools in glycoconjugate research. Glycoconjugate J. 2009, 26, 899-913.
5. Cohen, P.; Van Heyningen, S., Molecular action of toxins and viruses. Elsevier Biomedical Press ; Sole distributors for the USA and Canada, Elsevier Science Pub. Co.: Amsterdam ; New York : New York, N.Y., 1982; p xv, 369 p.
6. Endo, Y.; Tsurugi, K., RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128-30.
7. Sweeney, E. C.; Tonevitsky, A. G.; Temiakov, D. E.; Agapov, I. I.; Saward, S.; Palmer, R. A., Preliminary crystallographic characterization of ricin agglutinin. Proteins: Structure, Function, and Bioinformatics 1997, 28, 586-589.
8. Hegde, R.; Podder, S. K., Studies on the variants of the protein toxins ricin and abrin. Eur. J. Biochem. 1992, 204, 155-164.
9. Lord, J.; Roberts, L., Ricin: structure, synthesis, and mode of action
Microbial Protein Toxins. Schmitt, M.; Schaffrath, R., Eds. Springer Berlin / Heidelberg: 2005; Vol. 11, pp 495-514.
10. Bunn-Moreno, M.; Campos-Neto, A., Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J. Immunol. 1981, 127, 427-429.
11. Young, N. M.; Johnston, R. A. Z.; Watson, D. C., The amino acid sequences of jacalin and the Maclura pomifera agglutinin. FEBS Lett. 1991, 282, 382-384.
12. Sankaranarayanan, R.; Sekar, K.; Banerjee, R.; Sharma, V.; Surolia, A.; Vijayan, M., A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a [beta]-prism fold. Nat. Struct. Mol. Biol. 1996, 3, 596-603.
13. Yang, H.; Czapla, T. H., Isolation and characterization of cDNA clones encoding jacalin isolectins. J. Biol. Chem. 1993, 268, 5905-10.
14. Arockia Jeyaprakash, A.; Jayashree, G.; Mahanta, S. K.; Swaminathan, C. P.; Sekar, K.; Surolia, A.; Vijayan, M., Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity. J. Mol. Biol. 2005, 347, 181-8.
15. Sastry, M. V.; Banarjee, P.; Patanjali, S. R.; Swamy, M. J.; Swarnalatha, G. V.; Surolia, A., Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal(1----3)D-GalNAc). J. Biol. Chem. 1986, 261, 11726-11733.
16. Bourne, Y.; Astoul, C. H.; Zamboni, V.; Peumans, W. J.; Menu-Bouaouiche, L.; Van Damme, E. J.; Barre, A.; Rouge, P., Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem. J. 2002, 364, 173-80.
17. Kabir, S.; Daar, A. S., The Composition and Properties of Jacalin, a Lectin of Diverse Applications Obtained from the Jackfruit (Artocarpus Heterophyllus) Seeds. Immunol. Invest. 1994, 23, 167-188.
18. Jeyaprakash, A. A.; Katiyar, S.; Swaminathan, C. P.; Sekar, K.; Surolia, A.; Vijayan, M., Structural basis of the carbohydrate specificities of jacalin: an X-ray and modeling study. J. Mol. Biol. 2003, 332, 217-28.
19. Minke, W. E.; Roach, C.; Hol, W. G.; Verlinde, C. L., Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochem. 1999, 38, 5684-92.
20. Fan, E.; Merritt, E. A.; Verlinde, C. L.; Hol, W. G., AB(5) toxins: structures and inhibitor design. Curr. Opin. Struc. Biol. 2000, 10, 680-6.
21. Zhang, R. G.; Scott, D. L.; Westbrook, M. L.; Nance, S.; Spangler, B. D.; Shipley, G. G.; Westbrook, E. M., The three-dimensional crystal structure of cholera toxin. J. Mol. Biol. 1995, 251, 563-73.
22. Ohtomo, N.; Muraoka, T.; Tashiro, A.; Zinnaka, Y.; Amako, K., Size and Structure of the Cholera Toxin Molecule and Its Subunits. J. Infect. Dis. 1976, 133 (ArticleType: research-article / Issue Title: Supplement. The Structure and Functions of Enterotoxins / Full publication date: Mar., 1976 / Copyright © 1976 Oxford University Press), S31-S40.
23. Haan, L. d.; Hirst, T. R., Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Membr. Biol. 2004, 21, 77-92.
24. Sack, D. A.; Sack, R. B.; Nair, G. B.; Siddique, A. K., Cholera. Lancet 2004, 363, 223-33.
25. Fujinaga, Y., Transport of Bacterial Toxins into Target Cells: Pathways Followed by Cholera Toxin and Botulinum Progenitor Toxin. J. Biochem. 2006, 140, 155-160.
26. Thiagarajah, J. R.; Verkman, A. S., New drug targets for cholera therapy. Trends Pharmacol. Sci. 2005, 26, 172-5.
27. Peanut agglutinin, a lectin with an unusual quaternary structure and interesting ligand binding properties. Crystallogr. Rev. 2007, 13, 3-28.
28. (a) Reisner, Y.; Linker-Israeli, M.; Sharon, N., Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976, 25, 129-34; (b) Rose, M. L.; Birbeck, M. S.; Wallis, V. J.; Forrester, J. A.; Davies, A. J., Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature 1980, 284, 364-6.
29. Ravishankar, R.; Suguna, K.; Surolia, A.; Vijayan, M., Structures of the complexes of peanut lectin with methyl-beta-galactose and N-acetyllactosamine and a comparative study of carbohydrate binding in Gal/GalNAc-specific legume lectins. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1375-82.
30. Iglesias, J. L.; Lis, H.; Sharon, N., Purification and Properties of a d-Galactose/N-Acetyl-d- galactosamine-Specific Lectin from Erythrina cristagalli. Eur. J. Biochem. 1982, 123, 247-252.
31. (a) Moreno, E.; Teneberg, S.; Adar, R.; Sharon, N.; Karlsson, K.-A.; Ångström, J., Redefinition of the Carbohydrate Specificity of Erythrina corallodendron Lectin Based on Solid-Phase Binding Assays and Molecular Modeling of Native and Recombinant Forms Obtained by Site-Directed Mutagenesis†. Biochem. 1997, 36, 4429-4437; (b) Surolia, A.; Sharon, N.; Schwarz, F. P., Thermodynamics of Monosaccharide and Disaccharide Binding to Erythrina corallodendron Lectin. J. Biol. Chem. 1996, 271, 17697-17703; (c) Teneberg, S.; Angström, J.; Jovall, P. A.; Karlsson, K. A., Characterization of binding of Gal beta 4GlcNAc-specific lectins from Erythrina cristagalli and Erythrina corallodendron to glycosphinogolipids. Detection, isolation, and characterization of a novel glycosphinglipid of bovine buttermilk. J. Biol. Chem. 1994, 269, 8554-8563.
32. Svensson, C.; Teneberg, S.; Nilsson, C. L.; Kjellberg, A.; Schwarz, F. P.; Sharon, N.; Krengel, U., High-resolution Crystal Structures of Erythrina cristagalli Lectin in Complex with Lactose and 2'-[alpha]--Fucosyllactose and Correlation with Thermodynamic Binding Data. J. Mol. Biol. 2002, 321, 69-83.
33. Emmerich, C.; Helliwell, J. R.; Redshaw, M.; Naismith, J. H.; Harrop, S. J.; Raftery, J.; Kalb , A. J.; Yariv, J.; Dauter, Z.; Wilson, K. S., High-resolution structures of single-metal-substituted concanavalin A: the Co,Ca-protein at 1.6 A and the Ni,Ca-protein at 2.0 A. Acta Crystallographica Section D 1994, 50, 749-756.
34. Cecioni, S.; Faure, S.; Darbost, U.; Bonnamour, I.; Parrot-Lopez, H.; Roy, O.; Taillefumier, C.; Wimmerová, M.; Praly, J.-P.; Imberty, A.; Vidal, S., Selectivity among Two Lectins: Probing the Effect of Topology, Multivalency and Flexibility of “Clicked” Multivalent Glycoclusters. Chemistry – A European Journal 2011, 17, 2146-2159.
35. Gilboa-Garber, N.; Mizrahi, L.; Garber, N., Purification of the galactose-binding hemagglutinin of Pseudomonas aeruginosa by affinity column chromatography using sepharose. FEBS Lett. 1972, 28, 93-5.
36. Garber, N.; Guempel, U.; Belz, A.; Gilboa-Garber, N.; Doyle, R. J., On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochim. Biophys. Acta 1992, 1116, 331-3.
37. (a) Lanne, B.; Ciopraga, J.; Bergstrom, J.; Motas, C.; Karlsson, K. A., Binding of the galactose-specific Pseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates. Glycoconj. J. 1994, 11, 292-8; (b) Chen, C. P.; Song, S. C.; Gilboa-Garber, N.; Chang, K. S.; Wu, A. M., Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 1998, 8, 7-16.
38. Gilboa-Garber, N.; Sudakevitz, D.; Sheffi, M.; Sela, R.; Levene, C., PA-I and PA-II lectin interactions with the ABO(H) and P blood group glycosphingolipid antigens may contribute to the broad spectrum adherence of Pseudomonas aeruginosa to human tissues in secondary infections. Glycoconj. J. 1994, 11, 414-7.
39. Gilboa-Garber, N., Pseudomonas aeruginosa lectins. Methods Enzymol. 1982, 83, 378-85.
40. Glick, J.; Garber, N., The intracellular localization of Pseudomonas aeruginosa lectins. J. Gen. Microbiol. 1983, 129, 3085-90.
41. Avichezer, D.; Katcoff, D. J.; Garber, N. C.; Gilboa-Garber, N., Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J. Biol. Chem. 1992, 267, 23023-7.
42. Woods, D. E.; Bass, J. A.; Johanson, W. G., Jr.; Straus, D. C., Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis patients. Infect. Immun. 1980, 30, 694-9.
43. Mammen, M.; Choi, S.-K.; Whitesides, G. M., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Edit. 1998, 37, 2754-2794.
44. (a) Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E., Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 2000, 4, 696-703; (b) Lundquist, J. J.; Toone, E. J., The cluster glycoside effect. Chem. Rev. 2002, 102, 555-78.
45. Narain, R.; Armes, S. P., Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Biomacromolecules 2003, 4, 1746-58.
46. (a) Cloninger, M. J., Biological applications of dendrimers. Curr. Opin. Chem. Biol. 2002, 6, 742-8; (b) Roy, R.; Baek, M. G., Glycodendrimers: novel glycotope isosteres unmasking sugar coding. case study with T-antigen markers from breast cancer MUC1 glycoprotein. J. Biotechnol. 2002, 90, 291-309; (c) Turnbull, W. B.; Stoddart, J. F., Design and synthesis of glycodendrimers. J. Biotechnol. 2002, 90, 231-55; (d) Heidecke, C. D.; Lindhorst, T. K., Iterative synthesis of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties. Chemistry 2007, 13, 9056-67.
47. Sun, X.-L.; Kanie, Y.; Guo, C.-T.; Kanie, O.; Suzuki, Y.; Wong, C.-H., Syntheses of C-3-Modified Sialylglycosides as Selective Inhibitors of Influenza Hemagglutinin and Neuraminidase. Eur. J. Org. Chem. 2000, 2000, 2643-2653.
48. (a) Cade, D.; Ramus, E.; Rinaudo, M.; Auzely-Velty, R.; Delair, T.; Hamaide, T., Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles. Biomacromolecules 2004, 5, 922-7; (b) Gestwicki, J. E.; Strong, L. E.; Borchardt, S. L.; Cairo, C. W.; Schnoes, A. M.; Kiessling, L. L., Designed potent multivalent chemoattractants for Escherichia coli. Bioorg. Med. Chem. 2001, 9, 2387-93.
49. Reynolds, M.; Pérez, S., Thermodynamics and chemical characterization of protein-carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie 2011, 14, 74-95.
50. Pieters, R. J., Maximising multivalency effects in protein-carbohydrate interactions. Org. Biomol. Chem. 2009, 7, 2013-2025.
51. (a) Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E., Synthetic Multivalent Ligands as Probes of Signal Transduction. Angew. Chem. Int. Edit. 2006, 45, 2348-2368; (b) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing Receptor−Ligand Binding Mechanisms with Multivalent Ligand Architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933.
52. (a) Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K., Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 2001, 123, 8226-30; (b) Takae, S.; Akiyama, Y.; Otsuka, H.; Nakamura, T.; Nagasaki, Y.; Kataoka, K., Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 2005, 6, 818-24; (c) Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A., Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626-34; (d) Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, G. F.; Chen, Y. C.; Wu, Y. C.; Chen, C. C., Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem. Commun. 2003, 2920-1; (e) Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen, G. F.; Chen, C. C.; Wu, Y. C., Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124, 3508-9; (f) Mahon, E.; Aastrup, T.; Barboiu, M., Multivalent recognition of lectins by glyconanoparticle systems. Chem. Commun. 2010, 46, 5491-3.
53. (a) de la Fuente, J.; Penadés, S., Understanding carbohydrate-carbohydrate Interactions by means of glyconanotechnology. Glycoconj. J. 2004, 21, 149-163; (b) Hernaiz, M. J.; de la Fuente, J. M.; Barrientos, A. G.; Penades, S., A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew. Chem. Int. Ed. 2002, 41, 1554-7.
54. Chen, Y. J.; Chen, S. H.; Chien, Y. Y.; Chang, Y. W.; Liao, H. K.; Chang, C. Y.; Jan, M. D.; Wang, K. T.; Lin, C. C., Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 2005, 6, 1169-73.
55. Schofield, C. L.; Field, R. A.; Russell, D. A., Glyconanoparticles for the Colorimetric Detection of Cholera Toxin. Anal. Chem. 2007, 79, 1356-1361.
56. Chien, Y.-Y.; Jan, M.-D.; Adak, A. K.; Tzeng, H.-C.; Lin, Y.-P.; Chen, Y.-J.; Wang, K.-T.; Chen, C.-T.; Chen, C.-C.; Lin, C.-C., Globotriose-Functionalized Gold Nanoparticles as Multivalent Probes for Shiga-like Toxin. ChemBioChem 2008, 9, 1100-1109.
57. Bergen, J. M.; von Recum, H. A.; Goodman, T. T.; Massey, A. P.; Pun, S. H., Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci. 2006, 6, 506-16.
58. (a) Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotech. 2008, 26, 83-90; (b) Brown, S. D.; Nativo, P.; Smith, J.-A.; Stirling, D.; Edwards, P. R.; Venugopal, B.; Flint, D. J.; Plumb, J. A.; Graham, D.; Wheate, N. J., Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc. 2010, 132, 4678-4684.
59. Li, X.; Guo, J.; Asong, J.; Wolfert, M. A.; Boons, G.-J., Multifunctional Surface Modification of Gold-Stabilized Nanoparticles by Bioorthogonal Reactions. J. Am. Chem. Soc. 2011, 133, 11147-11153.
60. (a) Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75; (b) Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110 (32), 15700-7.
61. Frens, G., Particle size and sol stability in metal colloids. Colloid & amp; Polymer Science 1972, 250, 736-741.
62. (a) Zheng, M.; Davidson, F.; Huang, X., Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J. Am. Chem. Soc. 2003, 125, 7790-1; (b) Zheng, M.; Huang, X., Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J. Am. Chem. Soc. 2004, 126, 12047-54.
63. Arnida; Malugin, A.; Ghandehari, H., Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 2010, 30, 212-217.
64. Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C., Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interf. Sci. 1991, 143, 513-526.
65. Torreri, P.; Ceccarini, M.; Macioce, P.; Petrucci, T. C., Biomolecular interactions by Surface Plasmon Resonance technology. Ann Ist Super Sanita 2005, 41, 437-41.
66. (a) van der Merwe, P. A.; Barclay, A. N., Analysis of cell-adhesion molecule interactions using surface plasmon resonance. Curr. Opin. Immunol. 1996, 8, 257-61; (b) van der Merwe, P. A.; Barclay, A. N., Transient intercellular adhesion: the importance of weak protein-protein interactions. Trends Biochem. Sci. 1994, 19, 354-8.
67. Cooper, M. A., Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 515-28.
68. (a) Critchley, P.; Clarkson, G. J., Carbohydrate-protein interactions at interfaces: comparison of the binding of Ricinus communis lectin to two series of synthetic glycolipids using surface plasmon resonance studies. Org. Biomol. Chem. 2003, 1, 4148-59; (b) Critchley, P.; Willand, M. N.; Rullay, A. K.; Crout, D. H., Carbohydrate-protein interactions at interfaces: synthesis of thiolactosyl glycolipids and design of a working model for surface plasmon resonance. Org. Biomol. Chem. 2003, 1, 928-38.
69. (a) Kuziemko, G. M.; Stroh, M.; Stevens, R. C., Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 1996, 35, 6375-84; (b) MacKenzie, C. R.; Hirama, T.; Lee, K. K.; Altman, E.; Young, N. M., Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 1997, 272, 5533-8.
70. Uzawa, H., [Highly sensitive detection technology for biological toxins applying sugar epitopes]. Yakugaku Zasshi 2009, 129, 93-106.
71. (a) Mann, D. A.; Kanai, M.; Maly, D. J.; Kiessling, L. L., Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for Concanavalin A. J. Am. Chem. Soc. 1998, 120, 10575-10582; (b) Cecioni, S.; Lalor, R.; Blanchard, B.; Praly, J.-P.; Imberty, A.; Matthews, S. E.; Vidal, S., Achieving High Affinity towards a Bacterial Lectin through Multivalent Topological Isomers of Calix[4]arene Glycoconjugates. Chemistry – A European Journal 2009, 15, 13232-13240.
72. Attie, A. D.; Raines, R. T., Analysis of Receptor-Ligand Interactions. J. Chem. Ed. 1995, 72, 119-null.
73. Itakura, Y.; Nakamura-Tsuruta, S.; Kominami, J.; Sharon, N.; Kasai, K.; Hirabayashi, J., Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. 2007, 142, 459-69.
74. (a) Schofield, C. L.; Haines, A. H.; Field, R. A.; Russell, D. A., Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 2006, 22, 6707-11; (b) Taniguchi, I.; Akiyoshi, K.; Sunamoto, J., Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin, RCA120. Macromol. Chem. Physic. 1999, 200, 1554-1560; (c) Deng, Z.; Li, S.; Jiang, X.; Narain, R., Well-Defined Galactose-Containing Multi-Functional Copolymers and Glyconanoparticles for Biomolecular Recognition Processes. Macromolecules 2009, 42, 6393-6405.
75. Sharma, S.; Bharadwaj, S.; Surolia, A.; Podder, S. K., Evaluation of the stoichiometry and energetics of carbohydrate binding to Ricinus communis agglutinin: a calorimetric study. Biochem. J. 1998, 333, 539-42.
76. Arockia Jeyaprakash, A.; Jayashree, G.; Mahanta, S. K.; Swaminathan, C. P.; Sekar, K.; Surolia, A.; Vijayan, M., Structural Basis for the Energetics of Jacalin-Sugar Interactions: Promiscuity Versus Specificity. J. Mol. Bio. 2005, 347, 181-188.
77. (a) Branderhorst, H. M.; Liskamp, R. M. J.; Visser, G. M.; Pieters, R. J., Strong inhibition of cholera toxin binding by galactose dendrimers. Chem. Commun. 2007, 5043-5045; (b) Schofield, C. L.; Field, R. A.; Russell, D. A., Glyconanoparticles for the colorimetric detection of cholera toxin. Anal. Chem. 2007, 79, 1356-61; (c) Kuramitz, H.; Miyagaki, S.; Ueno, E.; Hata, N.; Taguchi, S.; Sugawara, K., Binding assay for cholera toxin based on sequestration electrochemistry using lactose labeled with an electroactive compound. Analyst 2011, 136, 2373-8; (d) Mertz, J. A.; McCann, J. A.; Picking, W. D., Fluorescence analysis of galactose, lactose, and fucose interaction with the cholera toxin B subunit. Biochem. Biophys. Res. Commun. 1996, 226, 140-4; (e) Podlipnik, C.; Velter, I.; La Ferla, B.; Marcou, G.; Belvisi, L.; Nicotra, F.; Bernardi, A., First round of a focused library of cholera toxin inhibitors. Carbohydr. Res. 2007, 342, 1651-60; (f) Fan, E.; Merritt, E. A.; Zhang, Z.; Pickens, J. C.; Roach, C.; Ahn, M.; Hol, W. G., Exploration of the GM1 receptor-binding site of heat-labile enterotoxin and cholera toxin by phenyl-ring-containing galactose derivatives. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 201-12; (g) Polizzotti, B. D.; Kiick, K. L., Effects of polymer structure on the inhibition of cholera toxin by linear polypeptide-based glycopolymers. Biomacromolecules 2006, 7, 483-90.
78. Vrasidas, I.; de Mol, Nico J.; Liskamp, Rob M. J.; Pieters, Roland J., Synthesis of Lactose Dendrimers and Multivalency Effects in Binding to the Cholera Toxin B Subunit. Eur. J. Org. Chem. 2001, 2001, 4685-4692.
79. Arosio, D.; Vrasidas, I.; Valentini, P.; Liskamp, R. M.; Pieters, R. J.; Bernardi, A., Synthesis and cholera toxin binding properties of multivalent GM1 mimics. Org. Biomol. Chem. 2004, 2, 2113-24.
80. Liu, S.; Kiick, K. L., Architecture Effects on the Binding of Cholera Toxin by Helical Glycopolypeptides. Macromolecules 2008, 41, 764-772.
81. Pukin, A. V.; Branderhorst, H. M.; Sisu, C.; Weijers, C. A.; Gilbert, M.; Liskamp, R. M.; Visser, G. M.; Zuilhof, H.; Pieters, R. J., Strong inhibition of cholera toxin by multivalent GM1 derivatives. ChemBioChem 2007, 8, 1500-3.
82. Branderhorst, H. M.; Liskamp, R. M.; Visser, G. M.; Pieters, R. J., Strong inhibition of cholera toxin binding by galactose dendrimers. Chem. Commun. 2007, 5043-5.
83. Joginadha Swamy, M.; Gupta, D.; Mahanta, S. K.; Surolia, A., Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr. Res. 1991, 213, 59-67.
84. (a) Okada, T.; Makino, T.; Minoura, N., Fluorescence emission and polarization for analyzing binding of ruthenium metalloglycocluster to lectin and tetanus toxin C-fragment. Bioconjug. Chem. 2009, 20, 1296-8; (b) La Belle, J. T.; Gerlach, J. Q.; Svarovsky, S.; Joshi, L., Label-free impedimetric detection of glycan-lectin interactions. Anal. Chem. 2007, 79, 6959-64; (c) Ting, S. R. S.; Min, E. H.; Escalé, P.; Save, M.; Billon, L.; Stenzel, M. H., Lectin Recognizable Biomaterials Synthesized via Nitroxide-Mediated Polymerization of a Methacryloyl Galactose Monomer. Macromolecules 2009, 42, 9422-9434.
85. Banerjee, R.; Das, K.; Ravishankar, R.; Suguna, K.; Surolia, A.; Vijayan, M., Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J. Mol. Biol. 1996, 259, 281-96.
86. Swamy, M. J.; Gupta, D.; Mahanta, S. K.; Surolia, A., Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr. Res. 1991, 213, 59-67.
87. Ikuta, A.; Mizuta, N.; Kitahata, S.; Murata, T.; Usui, T.; Koizumi, K.; Tanimoto, T., Preparation and characterization of novel branched beta-cyclodextrins having beta-D-galactose residues on the non-reducing terminal of the side chains and their specific interactions with peanut (Arachis hypogaea) agglutinin. Chem. Pharm. Bull. (Tokyo) 2004, 52, 51-6.
88. Yang, Q.; Ulbricht, M., Cylindrical Membrane Pores with Well-Defined Grafted Linear and Comblike Glycopolymer Layers for Lectin Binding. Macromolecules 2011, 44, 1303-1310.
89. (a) La Belle, J. T.; Gerlach, J. Q.; Svarovsky, S.; Joshi, L., Label-Free Impedimetric Detection of Glycan−Lectin Interactions. Anal. Chem. 2007, 79, 6959-6964; (b) Sharma, V.; Srinivas, V. R.; Adhikari, P.; Vijayan, M.; Surolia, A., Molecular basis of recognition by Gal/GalNAc specific legume lectins: Influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology 1998, 8, 1007-1012; (c) Foley, K. J.; Forzani, E. S.; Joshi, L.; Tao, N., Detection of lectin-glycan interaction using high resolution surface plasmon resonance. Analyst 2008, 133, 744-6.
90. Reynolds, A. J.; Haines, A. H.; Russell, D. A., Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 2006, 22, 1156-63.
91. Berman, E.; Lis, H.; James, T. L., Binding of [1-13C]galactose-enriched hen ovalbumin to Erythrina cristagalli agglutinin as studied by 13C-NMR spectroscopy. Eur. J. Biochem. 1986, 161, 589-594.
92. Gupta, D.; Cho, M.; Cummings, R. D.; Brewer, C. F., Thermodynamics of carbohydrate binding to galectin-1 from Chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins. Biochemistry 1996, 35, 15236-43.
93. Wu, A. M.; Wu, J. H.; Tsai, M. S.; Yang, Z.; Sharon, N.; Herp, A., Differential affinities of Erythrina cristagalli lectin (ECL) toward monosaccharides and polyvalent mammalian structural units. Glycoconj. J. 2007, 24, 591-604.
94. Chen, C.-P.; Song, S.-C.; Gilboa-Garber, N.; Chang, K. S. S.; Wu, A. M., Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 1998, 8, 7-16.
95. Lanne, B.; Ciopraga, J.; Bergstrom, J.; Motas, C.; Karlsson, K. A., Binding of the galactose-specific Pseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates. Glycoconj. J. 1994, 11, 292-8.
96. Nurisso, A.; Blanchard, B.; Audfray, A.; Rydner, L.; Oscarson, S.; Varrot, A.; Imberty, A., Role of water molecules in structure and energetics of Pseudomonas aeruginosa PA-IL lectin interacting with disaccharides. J. Biol. Chem. 2010, 285, 20316-2037.
97. Chen, Y.-J.; Chen, S.-H.; Chien, Y.-Y.; Chang, Y.-W.; Liao, H.-K.; Chang, C.-Y.; Jan, M.-D.; Wang, K.-T.; Lin, C.-C., Carbohydrate-Encapsulated Gold Nanoparticles for Rapid Target-Protein Identification and Binding-Epitope Mapping. ChemBioChem 2005, 6, 1169-1173.
98. Marotte, K.; Preville, C.; Sabin, C.; Moume-Pymbock, M.; Imberty, A.; Roy, R., Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Org. Biomol. Chem. 2007, 5 , 2953-61.
99. Moreau, J.; Marchand-Brynaert, J., Modular Synthesis of Bifunctional Linkers for Materials Science. Eur. J. Org. Chem. 2011, 2011, 1641-1644.
100. Stübs, G.; Rupp, B.; Schumann, R. R.; Schröder, N. W. J.; Rademann, J., Chemoenzymatic Synthesis of a Glycolipid Library and Elucidation of the Antigenic Epitope for Construction of a Vaccine Against Lyme Disease. Chemistry – A European Journal 2010, 16, 3536-3544.
101. De, S.; Ramakrishnan, S., Folding of a Donor-Containing Ionene by Intercalation with an Acceptor. Chemistry – An Asian Journal 2011, 6, 149-156.
102. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3-7.