研究生: |
王湘靈 Wang, Hisang-Ling |
---|---|
論文名稱: |
生物色素太陽電池葉綠素a衍生物之光電性質量子分析 Quantum Analysis of Photo-electronic Characteristics of Chlorophyll a Derivatives in Biological Pigment Solar Cells |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
楊鏡堂
包淳偉 蔡明剛 洪哲文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 太陽電池 、生物色素 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
至今能夠達到高效率的染料敏化太陽電池大多使用釕金屬錯合物作為染料,然而目前為止釕金屬仍相當昂貴。使得許多學者轉而投入同樣具備有吸光特性,並且廣泛存在於自然界中的植物色素研究,期望能以價格低廉且取得容易的植物色素作為替代染料。
日本學者以天然色素葉綠素a (chlorophyll a)為基本結構,做結構上的修飾得到二氫卟吩(chlorin),並更進一步在此結構下添加長碳鏈,得到Chlorins-1-4衍生分子,且產生光電轉換效率上的差異。本研究即利用密度泛函理論(density functional theory, DFT)原理與時間相依泛函密度理論(time-dependent density functional theory, TD-DFT)模擬計算二氫卟吩衍生分子Chlorins-1-4的各項結構與光學特性,如能階分布、能隙、分子軌域與紫外線可見光譜。另外,更使用Marcus Theory計算電子傳遞速率、以熱化學分析與陽極鍵結能力以及分子偶極矩的運算,並將各項特性與其文獻中實驗之光電轉換效率做討論比較,分析影響此類太陽電池光電轉換的關鍵因子。
另外也以二氫卟吩分子為基礎結構,對其結構中心置換金屬離子成衍生物Chlorin-metal,並同樣進行各項結構與光學特性分析,希望藉此結構上的改變達到染料分子各項特性上的改變,進而得到更好的光電轉換效率。本論文經由對Chlorin-metal的分析發現,中心金屬離子與相鄰之氮原子在電負度上的差異大小會造成染料分子中心區域電子雲分布的改變,間接影響分子吸收光譜分別在紫外光與長波長範圍的吸收強度。因此,未來可藉由置換不同電負度的中心金屬離子,達到期望之吸收光譜變化。
Though ruthenium dyes provide high power conversion efficiency in photoelectrochemical cells, pollution and costliness are fatal flaws. Therefore, researchers made efforts in biological pigments, which are easy to be collected and environmental friendly. Researchers had modified chlorophyll a structure and obtained a dye with 6.1% power conversion efficiency named chlorin. Furthermore, they added various hydrocarbon chains to chlorin. With diffierent hydrocarbon chains, the chlorin derivatives provide different efficiencies.
This research intends to find out the main factors that affect the power conversion efficiency of chlorin derivaives. By using density functional theory (DFT) with hybrid exchange-correlation functional B3LYP and 6-31G basis set, we calculated the photoelectronic properties of chlorin derivatives, such as energy gap, molecular orbital and UV/VIS absorbance spectrum. We also calculated electron injenction speed, proton affinity, and transition dipole moment. Each property is compared and discussed to analyze the major factors that affect the photoelectronic characteristics.
In addition, we use chlorin as a basic structure and alternate the central metal ion to obtain variations in photoelectrochemical properties. According to our results, the differenece in electronegativity between the central metal ion and the adjacent nitrogen atom causes changes in distribution of electron clouds, which indirectly affect the molecule absorbance magnitude in ultra violet and long wavelength range. Therefore, by alternating central metal ion with different electronegativity, the absorbance spectrum can be controlled.
[1] U.S. Energy Information Administration : International Energy Outlook 2011 http://205.254.135.7/forecasts/ieo/
[2] http://www.bp.com/liveassets/bp_internet/china/bpchina_chinese/STAGING/local_assets/downloads_pdfs/BPStatsReview2010_CN.pdf
[3] M. Grätzel, “Powering the planet”, Nature, Vol. 403, pp. 363, 2000.
[4] http://www.wbgu.de/en/home/
[5] F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations”, J. Phys. Chem., Vol. 44, pp. 865-873, 1940.
[6] D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, and P. Radlick, “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I ” , J. Am. Chem. Soc., Vol. 89, pp. 5455-5456, 1967.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte : platinum photocell”, Nature, Vol. 261, pp. 402-403, 1976.
[8] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, pp. 737-740, 1991.
[9] A. Hagfeldt and M. Grätzel,”Molecular photovoltaics”, Accounts of Chemical Research, Vol.33, pp. 269-277, 2000.
[10] M. K. Nazeeruddin, F. D. Angelies, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc, Vol. 127, pp. 16835-16847, 2005.
[11] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, “Enhance the optical absorpticity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium seneitizers for high performance dye-sensitized solar cells”, J. Am. Chem. Soc, Vol. 130, pp. 10720-10728, 2008.
[12] A. Yella, H. W. Lee,H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel,” Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, Vol. 334, pp. 629-633, 2011.
[13] F. Aiga and T. Tada, “Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cells”, Journal of Molecular Structure, Vol.658, pp. 25–32, 2003.
[14] C. Qin and A. E. Clark, “DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells”, Chem. Phys. Lett., Vol. 438, pp. 26-30, 2007.
[15] A. Mishra, M. K. R. Fischer and P. Bäuerle, “Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules”, Angew. Chem. Int. Ed, Vol. 48, pp. 2474-2499, 2009.
[16] S. Hao, J. Wu, Y. Huang and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell”, Solar Energy, Vol. 80, pp. 209-214, 2006.
[17] H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo and Y. J. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea”, Journal of Alloys and Compounds, Vol. 495, pp. 606-610, 2010.
[18] X. F. Wang, C. H. Zhan, T. Maoka, Y. Wada and Y. Koyama, “Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c’1 and c’2 from Undaria pinnatifida (Wakame)”, Chem. Phys. Lett., Vol. 447, pp. 79-85, 2007.
[19] X. F. Wang, O. Kitao, E. Hosono, H. Zhou, S. I. Sasaki, and H. Tamiaki, “TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion”, J. of Photochem. and Photobio., Vol. 210, pp. 145-152, 2010.
[20] X. F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou and S. I. Sasaki, “Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes”, Langmuir, Vol. 26, pp. 6320-6327, 2010.
[21] A. Kay and M. Grätzel, “Artificial photosynthesis. 1. photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins”, J. Phys. Chem, Vol. 97, pp. 6272-6277, 1993.
[22] M. K. Nazeeruddin, R. Humphry-Baker, D. L. Officer, W. M. Campbell, A. K. Burrell, and M. Grätzel, “Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity”, Langmuir, Vol. 20, pp. 6514-6517, 2004.
[23] X. F. Wang and H. Tamiaki, “Cyclic tetrapyrrole based molecules for dye-sensitized solar cells”, Energy Environ. Sci., Vol. 3, pp. 94-106, 2010.
[24] M. A. L. Marques, “Time-dependent density functional theory”, Berlin: Springer, 2006.
[25] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys, Vol. 98, pp. 5648-5652, 1993.
[26] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density” , Phys. Rev. B, Vol. 37, pp. 785-89, 1988.
[27] T. Yanai, D. P. Tew and N. C. Handy, “A new hybrid exchange- correlation functionl using the Coulomb-attenuating method (CAM-B3LYP)”, Chem. Phys. Lett., Vol. 393, pp. 51-57, 2004.
[28] W. J. Herre, R. Ditcrfield and J. A. Pople, “Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic molecules”, J. Chem. Phys., Vol. 56, pp. 2257-2261, 1972.
[29] R. A. Marcus, “On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.1”, J. Chem. Phys., Vol. 24, pp. 966-978, 1956.
[30] X. F. Wang, O. Kitao, H. Zhou, H. Tamiakib and S. I. Sasaki, “Extension of p-conjugation length along the Qy axis of a chlorophyll a derivative for efficient dye-sensitized solar cells”, Chem. Commun., Vol. 45, pp. 1523-1525, 2009.
[31] SRKC S. Yamijala, G. Periyasamy, and S. K. Pati, “Computational Studies on Structural and Excited-State Properties of Modified Chlorophyll f with Various Axial Ligands”, J. Phys. Chem. A, Vol. 115, pp. 12298-12306, 2011.
[32] S. F. Nelsen, D. A. Trieber, R. F. Ismagilov and Y. Teki, “Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds”, J. Am. Chem. Soc., Vol. 123, pp. 5684–5694, 2001.
[33] S. F. Nelsen and F. Blomgren, “Estimation of Electron Transfer Parameters from AM1 Calculations”, J. Org. Chem., Vol. 66, pp. 6551–6559, 2001.