簡易檢索 / 詳目顯示

研究生: 梁睿燊
Liang, Ruei-Shen
論文名稱: 關於多項式平方和希爾伯特定理與極小多樣體的關係
On the Hilbert’s theorem of sum of squares of polynomials and the relation with variety of minimal degree
指導教授: 卓士堯
JOW, SHIN-YAO
口試委員: 陳俊成
CHEN, JIUN-CHENG
陳正傑
Chen, Jheng-Jie
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 30
中文關鍵詞: 多項式平方和極小多樣體
外文關鍵詞: sum of squares of polynomials, variety of minimal degree
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非負實係數多項式都能不能寫成平方和一直都被猜測,直到希爾伯特證明出任意n變數非負齊2d次多項式,都可以寫成一些d次多項式的平方和的充分必要條件為(a) n=2或(b) 2d=2又或(c) n=3且2d=4。之後,有人在射影多樣體上討論一樣的問題,發現這個實代數幾何上問題竟然和複代數幾何中一個很重要的物件極小多項式有緊密的關係。我們將用這項定理來處理一些已知的結果。


    There are many guess whether a non-negative real polynomial can be written
    as a sum-of-squares of polynomial. Until Hilbert proof that every non-negative
    homogeneous polynomial of degree 2d in n-variables can be written as a sum-ofsquares of homogeneous polynomials of degree d if and only if either (a) n=2 or
    (b) 2d=2 or (c) n=3 and 2d=4. After that, some people ask the same question
    on the projective variety. They discover this problem which is the problem in the
    real algebraic geometry has a closed relation with the variety of minimal degree
    which is an important object in complex algebraic geometry. We will use the new
    theorem to deal with some known results.

    1 Introduction...6 2 Sum of sqrares...8 3 Variety of Minimal Degree...10 3.1 Invariants of projective variety...10 3.2 Property of degree and dimension...13 3.3 Variety of minimal degree...16 3.4 Classification of Variety of Minimal Degree...17 4 The Main Theorem of Sum-of-squares and Variety of Minimal degree...19 4.1 sum of squares imply minimal degree...19 4.2 minimal degree imply sum of squares...21 5 Application...25 6 Conclusion...28 Bibliography...29

    David Hilbert, Uber die Darstellung definiter Formen als Summe von For- ¨
    menquadraten, Math. Ann. 32, no. 3, 342–350, 1888.
    E. Artin, Uber die Zerlegung definiter Funktionen in Quadrate, Abh. math.
    Sem. Hamburg 5, 110–115, 1927.
    T. S. Motzkin, The arithmetic-geometric inequality. In: Proc. Symposium
    on Inequalities, edited by O. Shisha, Academic Press, New York, 205–224,
    1967.
    M. D. Choi, T. Y. Lam, and B. Reznick. Sums of squares of real polynomials. In K-theory and algebraic geometry: connections with quadratic forms
    and division algebras (Santa Barbara, CA, 1992), volume 58 of Proc. Sympos.
    Pure Math., 103–126. Amer. Math. Soc., Providence, RI, 1995.
    G. Blekherman, G. G. Smith, and M. Velasco. Sum of squares and varities
    of minimal degree. J. Amer. Math. Soc., 29(3):893-913, 2016.
    D. Eisenbud, J. Harris: On varieties of minimal degree (a centennial account),
    in “Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985)”, 3–13,
    Proc. Sympos. Pure Math. 46, Part 1.
    G. Blekherman, G. G. Smith, and M. Velasco. Sharp degree bounds for
    sum-of-square certificates on algebraic curve. Journal de Mathmatiques Pures
    et Appliques (JMPA), Volume 129, 61-86, 2019.
    29
    D. Mumford: Algebraic Geometry I: Complex Projective Varieties,
    Springer, New York, 1976.
    Igor R. Shafarevich: Basic Algebraic Geometry 1: Variety in Projective
    Space Third Edition, Springer, New York, 2013.
    R. Hertshorne: Algebraic Geometry, Springer, New York, 1977.
    E. Bertini: Introduzione alla geometria proiettiva degli iperspazi, Enrico
    Spoerri, Pisa, 1907.
    P. Del Pezzo: Sulle superficie di ordine n immerse nello spazio di n+1 dimensioni, Rend. Circ. Mat. Palermo 1, 1886.
    M. Velasco. Algebraic geometry through thr sum-of-squares lens.

    QR CODE