簡易檢索 / 詳目顯示

研究生: 蔡艾凌
Tsai, Ai-Ling
論文名稱: The functional study of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) subunit and its iron-sulfur cluster in human mitochondrial complex I under oxidative stress
人類粒線體酵素複合體 I 內NDUFV2次單元蛋白質及其鐵硫中心在氧化壓力下之功能研究
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員: 張壯榮
李岳倫
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 52
中文關鍵詞: NDUFV2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) is one of the core nucleus-encoded subunits existing in human mitochondrial complexⅠ. It contains one iron sulfur cluster ([2Fe-2S] binuclear cluster N1a), which may serve as an electron reservoir and play an important role in the prevention of oxidative damage. Mutations of NDUFV2 have been implicated in Parkinson's disease, bipolar disorder and schizophrenia. To verify the mitochondrial metabolic function of NDUFV2, we applied the RNA interference technology in the T-REx293 cells. We found that the suppression of NDUFV2 decreased the complex I activity and reduced oxygen consumption rate of complex I, but had no significantly effect on ATP generation, reactive oxygen species (ROS) formation in normal cell culture conditions. While exposure to oxidative stress, the deficiency of NDUFV2 in the knockdown cells resulted in decreasing the oxygen consumption rate, reducing the ATP generation and increasing the ROS formation. These data suggested that NUDFV2 are essential for electron-transport and normal energy production under oxidative stress. In addition, in an attempt to identify the iron-sulfur cluster of NDUFV2 for complex I function, the NDUFV2 cysteine mutation cell lines were established. We found that the cysteine mutation of NDUFV2 led to a decline of oxygen consumption rate but caused no significant change in targeting NDUFV2 to mitochondria. While exposure to oxidative stress, the cysteine mutation cell lines also diminished oxygen consumption rate. Taken these data together, we suggested that intact iron-sulfur cluster of NDUFV2 is essential for mitochondrial respiratory chain function. In this report, we proved that the NDUFV2 plays a critical role in energy generation process of mammalian cells and the iron-sulfur cluster of NDUFV2 is involved in conducting the electron transfer in the mitochondrial complex I.


    Table of contents 中文摘要. i Abstracts. ii Abbreviations v Introduction 1 Materials and methods 11 Results……... 20 A. The functional studies of NDUFV2………………………………………... 20 1. Reduced expression of NDUFV2 in T-REx293 cells………………… 20 2. The complex I activity was reduced in NDUFV2 knock-down cells.. 20 3. Oxygen consumption rate of respiratory chain was reduced in NDUFV2 suppression cells…………………………………………... 21 4. NDUFV2 suppression could affect ROS generation in cells under oxidative stress……………………………………………………….. 22 5. NDUFV2 suppression cells had no effect on ATP generation……… 23 B. The functional studies of NDUFV2 cysteine mutations…………………... 24 1. Establishment of cysteine mutations in NDUFV2…………………... 24 2. NDUFV2 cysteine mutation(s) cell lines did not affect the NDUFV2 targeting to mitochondria……………………………………………. 25 3. Each NDUFV2 cysteine mutation cell line varied in NDUFV2 gene expression level……………………………………………………….. 26 4. Cysteine mutation cell lines reduced the oxygen consumption rate of the respiratory chain………………………………………………… 27 Discussion 28 A. The functional studies of NDUFV2……………………………………….. 28 B. Characterization of iron-sulfur cluster of NDFUV2……………………… 30 Table…………… 32 Figures…… 34 Reference 45 Appendixes 49

    1. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 2004. 3(3): p. 205-214.
    2. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: More Than Just a Powerhouse. Current Biology, 2006. 16(14): p. R551-R560.
    3. Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 2005. 6(5): p. 389-402.
    4. Lin, M.T. and M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006. 443(7113): p. 787-795.
    5. Andersen, J.K., Oxidative stress in neurodegeneration: cause or consequence? Nature Reviews Neuroscience, 2004. 10(7): p. S18-S25.
    6. Starkov, A.A., The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling. Annals of the New York Academy of Sciences, 2008. 1147(1): p. 37-52.
    7. Rouault, T.A. and W.H. Tong, Iron–sulfur cluster biogenesis and human disease. Trends in Genetics, 2008. 24(8): p. 398-407.
    8. Beinert, H., Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science, 1997. 277(5326): p. 653-659.
    9. Beinert, H. and P. Kiley, Redox control of gene expression involving iron-sulfur proteins. Change of oxidation-state or assembly/disassembly of Fe-S clusters? FEBS Lett, 1996. 382(1-2): p. 218-9; discussion 220-1.
    10. Rouault, T.A., et al., An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein. Biometals, 1992. 5(3): p. 131-40.
    11. Gaudu, P. and B. Weiss, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(19): p. 10094-10098.
    12. Hidalgo, E., et al., Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem, 1995. 270(36): p. 20908-14.
    13. Hentze, M.W. and L.C. Kuhn, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(16): p. 8175-8182.
    14. King, A., M.A. Selak, and E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 2006. 25(34): p. 4675-4682.
    15. Friedrich, T. and B. B□ttcher, The gross structure of the respiratory complex I: a Lego System. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004. 1608(1): p. 1-9.
    16. Janssen, R.J.R.J., et al., Mitochondrial complex I: Structure, function and pathology. Journal of Inherited Metabolic Disease, 2006. 29(4): p. 499-515.
    17. Carroll, J., Analysis of the Subunit Composition of Complex I from Bovine Heart Mitochondria. Molecular & Cellular Proteomics, 2003. 2(2): p. 117-126.
    18. Smeitink, J.A.M., et al., Nuclear genes of human complex I of the mitochondrial electron transport chain: state of the art. Human Molecular Genetics, 1998. 7(10): p. 1573-1579.
    19. Hinchliffe, P. and L.A. Sazanov, Organization of iron-sulfur clusters in respiratory complex I. Science, 2005. 309(5735): p. 771-4.
    20. Sazanov, L.A., Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-1436.
    21. Hinchliffe, P., Organization of Iron-Sulfur Clusters in Respiratory Complex I. Science, 2005. 309(5735): p. 771-774.
    22. Brandt, U., Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem, 2006. 75: p. 69-92.
    23. de Coo, R., et al., Molecular cloning and characterization of the active human mitochondrial NADH:ubiquinone oxidoreductase 24-kDa gene (NDUFV2) and its pseudogene. Genomics, 1995. 26(3): p. 461-6.
    24. Hattori, N., et al., Structural organization and chromosomal localization of the human nuclear gene (NDUFV2) for the 24-kDa iron-sulfur subunit of complex I in mitochondrial respiratory chain. Biochem Biophys Res Commun, 1995. 216(3): p. 771-7.
    25. Almeida, T., et al., The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem, 1999. 265(1): p. 86-93.
    26. Weidner, U., et al., The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol, 1993. 233(1): p. 109-22.
    27. Duborjal, H., et al., Immuno-purification of a dimeric subcomplex of the respiratory NADH-CoQ reductase of Rhodobacter capsulatus equivalent to the FP fraction of the mitochondrial complex I. FEBS Lett, 1997. 405(3): p. 345-50.
    28. Yano, T., et al., Expression of the 25-kilodalton iron-sulfur subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry, 1994. 33(2): p. 494-9.
    29. Yano, T., et al., The proton-translocating NADH-quinone oxidoreductase (NDH-1) of thermophilic bacterium Thermus thermophilus HB-8. Complete DNA sequence of the gene cluster and thermostable properties of the expressed NQO2 subunit. J Biol Chem, 1997. 272(7): p. 4201-11.
    30. Kerscher, S., et al., Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. Eur J Biochem, 2004. 271(17): p. 3588-95.
    31. Zu, Y., et al., Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry, 2002. 41(31): p. 10056-69.
    32. Yano, T., et al., Identification of amino acid residues associated with the [2Fe-2S] cluster of the 25 kDa (NQO2) subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. FEBS Lett, 1994. 354(2): p. 160-4.
    33. Sazanov, L.A. and P. Hinchliffe, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-6.
    34. Videira, A., Complex I from the fungus Neurospora crassa. Biochim Biophys Acta, 1998. 1364(2): p. 89-100.
    35. Swerdlow, R.H., et al., Complex I polymorphisms, bigenomic heterogeneity, and family history in Virginians with Parkinson's disease. J Neurol Sci, 2006. 247(2): p. 224-30.
    36. Xu, C., et al., Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord, 2008. 10(1): p. 105-10.
    37. Washizuka, S., et al., Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 2003. 120B(1): p. 72-8.
    38. Kim, S.H., et al., The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer's disease. Life Sci, 2001. 68(24): p. 2741-50.
    39. Karry, R., E. Klein, and D. Ben Shachar, Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry, 2004. 55(7): p. 676-84.
    40. Ben-Shachar, D. and R. Karry, Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS ONE, 2007. 2(9): p. e817.
    41. Benit, P., et al., Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat, 2003. 21(6): p. 582-6.
    42. Barrientos, A., In vivo and in organello assessment of OXPHOS activities. Methods, 2002. 26(4): p. 307-16.
    43. Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45.
    44. Weiss, H., et al., Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem, 1970. 14(1): p. 75-82.
    45. Kerscher, S., et al., The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ, 2008. 45: p. 185-222.
    46. Wallace, D.C., Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet, 1986. 12(1): p. 41-9.
    47. Letellier, T., et al., The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J, 1994. 302 ( Pt 1): p. 171-4.
    48. Rossignol, R., et al., Mitochondrial threshold effects. Biochem J, 2003. 370(Pt 3): p. 751-62.
    49. James, A.M., et al., Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J, 1996. 318 ( Pt 2): p. 401-7.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE