簡易檢索 / 詳目顯示

研究生: 陳思伯
Szu-Po Chen
論文名稱: 單根奈米碳管變溫下之電性量測
Electrical Measurement of a Single Carbon Nanotube under Various Temperatures
指導教授: 呂助增
Juh-Tzeng Lue
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 62
中文關鍵詞: 奈米碳管庫倫阻抗理論電子電晶體強侷限理論圖像轉移技術電性量測
外文關鍵詞: carbon nanotubes, coulomb blockade theory, single electron transistor, strong localization, pattern transfer technologies, electrical measurement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用半導體製程中,光學微影術之圖像轉移的方式,製作成長奈米碳管所需的電極樣品,再將樣品放入本實驗室自製之微波電漿化學氣相沉積系統之中成長奈米碳管,並在低溫下量測跨越電極的單根多壁奈米碳管樣品。
    我們選擇了兩種樣品做量測,對於結構完整的碳管,其在室溫下的電壓電流曲線會有階梯的變化出現,利用單電子電晶體的庫倫阻抗的效應,分析則以一個簡單的幾何模型,可以適當解釋此階梯的現象。除此之外,在量測另一個雜質較多的單根奈米碳管後,其電壓電流曲線在室溫下為歐姆曲線,但是在低溫下,會呈現非線性的現象,經由分析其電阻溫度曲線,可發現其呈現負電阻溫度係數,實驗結果將以強侷限理論做合理的解釋。


    We have measured a single multiwalled carbon nanotube grown on cross-structured electrodes constructed by catalyst nickel film deposited on SiO¬2/Si substrate by a method of microwave plasma enhanced chemical vapor deposition (MPECVD). The step in current-voltage characteristic measured at room temperature inherited to the single electron blockades is detected. A simple geometry model suggesting that the nanotube is loosely suspended between the electrodes can successfully portrait the steplike behavior.
    Temperature-dependent resistivity measurements were carried out at various temperatures for other samples solidly grown nanotube on electrodes. The R-T curves are nonlinear which are consistent with a one dimensional localized system characterized with the exponential behavior. A strong localization analysis will be shown.

    Abstract (English) i Abstract (Chinese) ii Acknowledgement iii Contents iv Chapter 1 Introduction 1.1 The origin of fullerene-related carbon nanotubes .....1 1.2 The characteristics of multiwalled nanotubes .........2 1.3 Current carbon nanotubes’research ...................3 1.4 Motivation ...........................................3 1.5 Organization of the thesis ...........................4 Chapter 2 Theory Background 2.1 Growth mechanism of carbon nanotubes .................7 2.2 Transport properties of carbon nanotubes .............9 2.2.1 Band structure of multiwalled tubes ................9 2.2.2 Electron transport in nanotubes ...................13 2.3 Multiwall nanotubes as quantum dots .................16 2.3.1 Coulomb blockade theory ...........................16 2.3.2 Single electron transistor ........................18 2.4 Strong localization .................................21 2.4.1 Hopping conductivity ..............................21 2.4.2 Nearest-neighbor hopping ..........................22 2.4.3 Variable range hopping ............................23 Chapter 3 Experimental Set-up and Processes 3.1 Arrangement of measuring apparatus ..................25 3.1.1 Oxidation system ..................................25 3.1.2 Photomask aligner .................................26 3.1.3 Thermal evaporation system ........................26 3.1.4 The α step apparatus ..................... ........27 3.1.5 Microwave plasma enhanced chemical vapor deposition........................................28 3.1.6 Scanning electron microscope ......................30 3.1.7 Four point measurement system .....................31 3.2 Pattern transfer technologies .......................33 3.2.1 Photolithography ..................................33 3.2.2 The lift-off fabrication process ..................33 3.3 Preparation of specimen .............................35 3.3.1 The nickel electrodes fabrication .................35 3.3.2 Production of carbon nanotubes ....................36 3.3.3 SEM analysis ......................................36 3.4 Measuring process ...................................37 3.5 Flow chart of experiment ............................37 Chapter 4 Results and Discussions 4.1 The SEM images of CNTs ..............................39 4.1.1 The SEM images of tangled carbon nanotubes ........39 4.1.2 The SEM images of a single CNT ....................42 4.2 Current-voltage characteristics of a single CNT .....44 4.2.1 Measurement results of a purely single CNT ........44 4.2.2 Measurement results of a single CNT with defects ..51 4.3 Temperature dependence of the electrical resistivities of single carbon nanotube ...........................55 4.3.1 TCR of a purely single CNT ........................55 4.3.2 TCR of a single CNT with defects ..................56 Chapter 5 Conclusions 5.1 Conclusions .........................................59 5.2 Future directions ...................................60 References ..............................................61

    [1] Peter J F Harris, "Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century", Cambridge University Press, pp. 3-7, (1999).
    [2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
    [3] S. Iijima, “High resolution electron microscopy of some carbonaceous Materials”, J. Microscopy, 119, 99, (1980).
    [4] S. Iijima, “Direct observation of the tetrahedral bonding in graphitized carbon black by high-resolution electron microscopy”, J. Cryst. Growth, 50, 675, (1980).
    [5] S. Iijima, T. Ichihashi and Y. Ando, “Pentagons, heptagons and negative curvature in graphitic microtubule growth”, Nature, 356, 776, (1992).
    [6] S.Y. Chen, H.Y. Miao, J.T. Lue, and M,S. Ouyang ”Fabrication and Field emission properties of multiwall nanotubes” , J. Phys.D: Applied Physics 37 pp.273-279 (2004).
    [7] Dent, F. J., and Cobb, J. W., J. Chem. Soc., 1929, 1903.
    [8] R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, and R.J. Waite, J. Catal., 26, 51, (1972).
    [9] Y.J. Yoon, H.K. Baik, Diamond Relat. Mater., 5, 797, (1996).
    [10] J. Han, J-B. Yoo, C.Y. Park, H-J. Kim, G.S. Park, M.Y., I.T Han, N. Lee, W. Yi,S.G. Yu, and J.M. Kim, J. Phys. Phys., 91, 483, (2002).
    [11] Y. Saito, Carbon, 33, 979, (1995).
    [12] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phy. Rev. Lett., 87, 275504-1, (2001).
    [13] C. Bower, O. Zhou, W. Zhu, D.J. Werder, and S. Jin, 77, 2767, (2000).
    [14] Mark Robertus Buitelaar, Den Haag, “Electron Transport in Multiwall Carbon Nanotubes”, Basel, pp. 9-13, (2004).
    [15] J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631, (1992).
    [16] N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579, (1992).
    [17] R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus. Appl. Phys. Lett. 60, 2204, (1992).
    [18] P.R. Wallace, Phys. Rev. 71, 622, (1947).
    [19] C.T. White and J.W. Mintmire, Nature 391, 19, (1998).
    [20] P. W. Chiu, “Nanoelectronics and Quantum Transport”, lecture notes, pp.60-62, (2006).
    [21] http://en.wikipedia.org/wiki/Coulomb_blockade
    [22] M. l. Lutwyche and Y. Wada, “Estimate of the Ultimate Perform of SET”, J. Appl. Phys. 75. 7, (1994).
    [23] N. F. Mott and E. A. Davis, “Electronic Process in Non-Crystalline Materials”, 2nd ed, Oxford University Press, pp. 32-34, (1979).
    [24] 呂助增, ”固態電子學”, 明文書局, pp.119-123, (1996).
    [25] J.D.Plummer, M.D.Deal, and P.B.Griffin, “Silicon VLSI Technology”, Prentice Hall, New Jersey, p. 296, (2000).
    [26] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, Wiley, 2nd ed, (1998).
    [27] L.W. Chang and J.T. Lue, “Electrrical Conductance in a Single Carbon Wire”, J. Nanoscience and Nanotechnology, 5, pp.1-5 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE