簡易檢索 / 詳目顯示

研究生: 曾安廷
Tseng, An-Ting
論文名稱: 鋰原子D譜線的量測
Spectroscopy of lithium D lines
指導教授: 王立邦
Wang, Li-Bang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 39
中文關鍵詞: D譜線
外文關鍵詞: lituium, D line, cross-beam method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We aim to measure the lithium D lines to test many-body QED calculations of few-electron system. The former experimental data from different groups are not consistent and there are also discrepancies in theoretical calculation. Therefore, more experimental confirmation is strongly desired. The lithium D lines were studied using an external cavity diode laser system that was frequency stabilized by a Fabry-Perot interferometer. The individual hyperfine transitions of the D1 line are well resolved using cross-beam method to eliminate Doppler broadening. The results for the 2S1/2 and 2P1/2 hyperfine structure interval are 800.788 ± 0.632 and 93.967 ± 0.259 MHz respectively. It is not consistent with previous measurements [1][3] due to lack of precise frequency determination of our laser system. Future work and possible improvement are discussed.


    我們藉由測量鋰原子的D 譜線來驗證少原子系統的多體QED 計算。由於之前其他實驗小組的實驗數據並不一致,而且理論計算也和實驗結果分歧,因此需要更多的實驗結果來確認。我們使用由Fabry-Perot 干涉共振腔穩頻的外腔二極體雷射系統來進行鋰原子的D譜線測量。我們使用垂直原子束的方法來移除都普勒頻寬並解析了D1譜線的超精細結構。實驗結果如下:2S1/2 到 2P1/2 的超精細結構分裂間距為 800.788 □ 0.632 MHz 以及 93.967 □ 0.259 MHz。這和前人測量的結果 [1][3]並不吻合。原因在於我們並沒有精準的雷射頻率控制。本論文也討論了未來工作以及可能的改進措施。

    1. Introduction 1 1.1 History of the D line 1 1.2 Motivation 2 2. Theory 4 2.1 Fundamental Physical Properties 4 2.2 Optical Properties 8 2.3 Atomic theory calculations 10 2.3.1 The central-field approximation 10 2.3.2 Fine structure 12 2.3.3 Hyperfine structure 13 2.4 The crossed-beam method 15 3. Experiment 16 3.1 Laser system 16 3.2 Atomic beam 19 3.3 Frequency stabilization 20 3.4 Fluorescence detection 22 3.5 Optical layout 23 4. Results and discussion 25 4.1 systematic errors 25 4.1.1 Zeeman effect 25 4.1.2 Effect of misalignment 26 4.2 Results and discussion 28 4.3 Consistency checks and comparison to previous results 33 5. Conclusion 37 6. Bibliography 38

    [1] J.Walls, R. Ashby, J.J Clarke, B. Lu, and W.A. van Wijngaarden. Eur. Phys. J. D 22, 159, (2003).

    [2] Z. C. Yan, and G. W. F. Drake, Phys. Rev. A 66, 042504 (2002).

    [3] D. Das, and V. Natarajan, Phys. Rev. A 75, 052508 (2007).

    [4] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, "Vapor Pressure of the Metallic Elements," Canadian Metallurgical Quarterly, 23, (1984).

    [5] D. Lide, ed., CRC Handbook of Chemistry and Physics, 84th ed., Boca Raton, FL: CRC, (2003).

    [6] Michael E. Gehm, Properties of 6Li, “http://www.phy.duke.edu/research/photon/
    qoptics/techdocs/pdf/PropertiesOfLi.pdf “ (2003).

    [7] E. Arimondo, M. Inguscio, and P. Violino. Rev. Mod. Phys. 49, 31 (1977).

    [8] W. I. McAlexander, E. R. I. Abraham, and R. G. Hulet. Phys. Rev. A, 54(1):R5, July (1996).

    [9] Stephen Gasiorowicz. “Quantum Physics”. Addison-Wesley, New York, 3rd Edition, (2003).

    [10] Harold J. Metcalf, and Peter van der Straten. “Laser Cooling and Trapping” Springer, (1999).

    [11] G. A. Noble, B. E. Schultz, H. Ming, and W.A. van Wijngaarden. Phys. Rev. A 74, 012502 (2006).
    [12] A. Beckmann, K.D. Bokle, D. Elke, Z. Phys. 270, 173 (1974).

    [13] W. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D:At., Mol. Clusters 36, 31 (1996).

    [14] K. C. Borg, T. G. Eck, and H. Wider, Phys. Rev. 153, 91 (1967).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE