研究生: |
陳以婕 Chen, I Chieh |
---|---|
論文名稱: |
Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability 奈米銀及奈米二氧化鈦對體外血腦屏障模型通透性之影響 |
指導教授: |
黃鈺軫
Huang, Yuh Jeen |
口試委員: |
陳仁焜
Chen, Jen Kun 萬磊 Wan, Lei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 129 |
中文關鍵詞: | 奈米銀 、奈米二氧化鈦 、血腦屏障 、通透性 、奈米毒性 |
外文關鍵詞: | silver nanoparticles, titanium dioxide nanoparticles, blood-brain barrier, permeability, nanotoxicity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討兩種工業常用的銀和二氧化鈦奈米粒子。將奈米粒子分別暴露於單培養系統及共培養系統24小時後,探討其毒性及對血腦屏障通透性之影響。首先,利用單層培養系統探討奈米銀(<10nm)及兩種粒徑之奈米二氧化鈦(3-5nm ST-01,30-50nm ST-21)對小鼠內皮細胞(bEnd.3)及星狀細胞(ALT)的毒理效應。再者,為研究奈米粒子對血腦屏障之影響,我們將內皮細胞及星狀細胞進行共培養模擬血腦屏障之結構,再將奈米粒子暴露於此,進而探討奈米粒子在共培養系統的毒理效應及血腦屏障之通透性影響。毒理效應之研究包含細胞生存率、奈米粒子攝食情形、活性氧化物之產生及細胞激素的釋放(MCP-1);而通透性之影響則包含跨內皮電阻值的變化(TEER)、緊密連結蛋白之表現(ZO-1、claudin-5)和奈米粒子之通透係數(permeability coefficient)。此外,我們也假設當細胞先被脂聚醣(LPS)刺激引起發炎反應後,再暴露奈米粒子是否受到更嚴重的影響。由實驗結果顯示,不論是奈米銀或奈米二氧化鈦皆傾向於刺激細胞產生活性氧化物質導致細胞調控失衡而死亡,而血腦屏障模型也受到奈米粒子的刺激後,導致跨內皮電阻值下降、緊密連接蛋白受到破壞,並使得奈米粒子通透屏障,其原因與活性氧化物質及細胞激素的產生有關。比較兩種奈米粒子所產生的效應,我們認為奈米銀比起奈米二氧化鈦具有較高的毒性,因奈米銀僅在低濃度(2ppm)就可使細胞有明顯的毒理及通透效應,而奈米二氧化鈦則需要較高濃度(100ppm)才有。另外,脂聚醣的預先刺激,並沒有使奈米粒子對細胞產生更嚴重的反應,但對血腦屏障的通透效應則具有較大的影響,可能與脂聚醣會刺激細胞免疫反應使大量的細胞激素釋放(MCP-1)有關。
In this study, we divided as mono-culture and BBB model system to explore the toxicity effect of TiO2 (3-5nm ST-01, 30-50nm ST-21) and Ag NPs (<10nm). In vitro BBB model by co-culture endothelial cells (bEnd.3) and astrocytes (ALT) were established to estimate whether BBB dysfunction. Accordingly, four works will be examined after exposing nanoparticles 24 hours, all of which are cell viability, uptake potential, intracellular reactive oxygen species (ROS), and cytokines (MCP-1). In addition, the integrity of BBB was estimated by measuring the tranendothelial electrical resistance (TEER), calculating the permeability and observing the tight junction protein expression. On the other hand, we also compare the condition with or without lipopolysaccharide (LPS), which is assumed as the inflammatory situation. Consequently, we found that the toxicity mechanism of Ag-NPs and TiO2 NPs in the cells were trend to follow the way by producing ROS to gradually induce cell death. BBB were influenced by this two kind of nanoparticles to decrease TEER value, disrupt tight junction proteins and increase permeability of nanoparticles. The reason of this were associated with ROS generation and cytokines secretion. Furthermore, we found that Ag-NPs were more noxious than TiO2 NPs according to the lower lethal dosage (2ppm) and higher permeability in the BBB model. On the other hand, LPS treatment would stimulate MCP-1 release to make severer effect on BBB model although it did not have significant influence with co-culture nanoparticles.
1. Nel, A., et al., Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res, 2013. 46(3): p. 607-21.
2. Rai, M., A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 2009. 27(1): p. 76-83.
3. Gupta, S.M. and M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011. 56(16): p. 1639-1657.
4. Piccinno, F., et al., Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 2012. 14(9).
5. Research, B. Nanotechnology: A Realistic Market Assessment. 2014; Available from: http://www.bccresearch.com/market-research/nanotechnology/nanotechnology-market-assessment-report-nan031f.html.
6. Maynard, A.D., A decade of uncertainty. Nat Nanotechnol, 2014. 9(3): p. 159-60.
7. Song, Y., X. Li, and X. Du, Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J, 2009. 34(3): p. 559-67.
8. Shi, H., et al., Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol, 2013. 10: p. 15.
9. Sayes, C.M., H. Staats, and A.J. Hickey, Scale of health: indices of safety and efficacy in the evolving environment of large biological datasets. Pharm Res, 2014. 31(9): p. 2256-65.
10. Buzea, C., I.I. Pacheco, and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007. 2(4): p. MR17.
11. Organization, W.H., Dementia. 2015.
12. Migliore, L., et al., Nanomaterials and neurodegeneration. Environ Mol Mutagen, 2015. 56(2): p. 149-70.
13. Shin, K., V.C. Fogg, and B. Margolis, Tight junctions and cell polarity. Annual Review of Cell and Developmental Biology, 2006. 22: p. 207-235.
14. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.
15. Sagare, A.P., R.D. Bell, and B.V. Zlokovic, Neurovascular defects and faulty amyloid-beta vascular clearance in Alzheimer's disease. J Alzheimers Dis, 2013. 33 Suppl 1: p. S87-100.
16. Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci, 2011. 12(12): p. 723-38.
17. Lu, M. and G. Hu, Targeting metabolic inflammation in Parkinson’s disease: implications for prospective therapeutic strategies. Clinical and Experimental Pharmacology and Physiology, 2012. 39(6): p. 577-585.
18. Bartels, A.L., et al., Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. J Neural Transm, 2008. 115(7): p. 1001-9.
19. Janigro, D., Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia, 2012. 53 Suppl 1: p. 26-34.
20. Fabene, P.F., C. Laudanna, and G. Constantin, Leukocyte trafficking mechanisms in epilepsy. Mol Immunol, 2013. 55(1): p. 100-4.
21. Brun, E., M. Carriere, and A. Mabondzo, In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO(2) nanoparticles. Biomaterials, 2012. 33(3): p. 886-96.
22. Trickler, W.J., et al., Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci, 2010. 118(1): p. 160-70.
23. Cramer, S., The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro. Journal of Nanomedicine & Nanotechnology, 2014. 05(05).
24. Naik, P. and L. Cucullo, In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci, 2012. 101(4): p. 1337-54.
25. Wilhelm, I. and I.A. Krizbai, In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm, 2014. 11(7): p. 1949-63.
26. Sarkar, A., M. Ghosh, and P.C. Sil, Nanotoxicity: Oxidative Stress Mediated Toxicity of Metal and Metal Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014. 14(1): p. 730-743.
27. Lee, K.J., et al., Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology, 2006. 17(9): p. 2424-2428.
28. Tien, D.-C., et al., Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. Journal of Alloys and Compounds, 2008. 463(1–2): p. 408-411.
29. Kumar Ghosh, S., et al., Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. Journal of Nanoparticle Research, 2003. 5(5-6): p. 577-587.
30. Sintubin, L., W. Verstraete, and N. Boon, Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 2012. 109(10): p. 2422-2436.
31. Suresh, A.K., et al., Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environmental Science & Technology, 2010. 44(13): p. 5210-5215.
32. Li, Q., et al., Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008. 42(18): p. 4591-4602.
33. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
34. Su, H.-L., et al., The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009. 30(30): p. 5979-5987.
35. Cushen, M., et al., Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 2012. 24(1): p. 30-46.
36. Lansdown, A.B., A review of the use of silver in wound care: facts and fallacies. Br J Nurs, 2004. 13(6 Suppl): p. S6-19.
37. Chen, X. and S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007. 107(7): p. 2891-2959.
38. Thompson, T.L. and J.T. Yates, Surface science studies of the photoactivation of TiO2-new photochemical processes. Chemical Reviews, 2006. 106(10): p. 4428-4453.
39. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): p. 53-229.
40. Norotsky A, J.J.C., Kleppa O J., Enthalpy of transformation of a high pressure polymorph of titanium dioxide to the rutile modification. Science, 1967. 158(338-389).
41. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 1995. 95(3): p. 735-758.
42. Mo, S.D. and W.Y. Ching, ELECTRONIC AND OPTICAL-PROPERTIES OF 3 PHASES OF TITANIUM-DIOXIDE - RUTILE, ANATASE, AND BROOKITE. Physical Review B, 1995. 51(19): p. 13023-13032.
43. Muscat, J., V. Swamy, and N.M. Harrison, First-principles calculations of the phase stability of TiO2. Physical Review B, 2002. 65(22).
44. Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004. 32(1-2): p. 33-177.
45. Tanaka, K., M.F.V. Capule, and T. Hisanaga, EFFECT OF CRYSTALLINITY OF TIO2 ON ITS PHOTOCATALYTIC ACTION. Chemical Physics Letters, 1991. 187(1-2): p. 73-76.
46. Selloni, A., Crystal growth - Anatase shows its reactive side. Nature Materials, 2008. 7(8): p. 613-615.
47. Yang, H.G., et al., Anatase TiO(2) single crystals with a large percentage of reactive facets. Nature, 2008. 453(7195): p. 638-U4.
48. Wunderlich, W., et al., Electronic properties of nano-porous TiO2- and ZnO-thin films-comparison of simulations and experiments. Journal of Ceramic Processing Research, 2004. 5(4): p. 343-354.
49. Paxton, A.T. and L. Thien-Nga, Electronic structure of reduced titanium dioxide. Physical Review B, 1998. 57(3): p. 1579-1584.
50. Li, G.H., et al., A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. Journal of Molecular Catalysis a-Chemical, 2007. 275(1-2): p. 30-35.
51. Szacilowski, K., et al., Bioinorganic photochemistry: Frontiers and mechanisms. Chemical Reviews, 2005. 105(6): p. 2647-2694.
52. Winkler, J., Titanium Dioxide. 2003.
53. Wikipedia, http://en.wikipedia.org/wiki/Titanium_dioxide.
54. Kurtoglu, M.E., T. Longenbach, and Y. Gogotsi, Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2011. 2(2): p. 108-116.
55. Tokyo, U.o., "Titanium Oxide for High-Density Data Storage. 2010.
56. Jones, B.J., et al., Cleavage of peptides and proteins using light-generated radicals from titanium dioxide. Analytical Chemistry, 2007. 79(4): p. 1327-1332.
57. Smeigh, A.L., et al., Effect of the presence of iodide on the electron injection dynamics of dye-sensitized TiO2-based solar cells. Journal of Physical Chemistry C, 2008. 112(32): p. 12065-12068.
58. Park, J., et al., Characterization of exposure to silver nanoparticles in a manufacturing facility. Journal of Nanoparticle Research, 2009. 11(7): p. 1705-1712.
59. Lee, J.H., et al., Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol, 2011. 23(4): p. 226-36.
60. Siripattanakul-Ratpukdi, S. and M. Fürhacker, Review: Issues of Silver Nanoparticles in Engineered Environmental Treatment Systems. Water, Air, & Soil Pollution, 2014. 225(4).
61. Oberdorster, G., E. Oberdorster, and J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005. 113(7): p. 823-39.
62. Robertson, T.A., W.Y. Sanchez, and M.S. Roberts, Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol, 2010. 6(5): p. 452-68.
63. Weir, A., et al., Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environmental Science & Technology, 2012. 46(4): p. 2242-2250.
64. Zhao, J. and V. Castranova, Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev, 2011. 14(8): p. 593-632.
65. Liu, H., et al., Biochemical Toxicity of Nano-anatase TiO2 Particles in Mice. Biological Trace Element Research, 2009. 129(1-3): p. 170-180.
66. Chen, X. and H.J. Schluesener, Nanosilver: A nanoproduct in medical application. Toxicology Letters, 2008. 176(1): p. 1-12.
67. Wijnhoven, S.W.P., et al., Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009. 3(2): p. 109-138.
68. Ebabe Elle, R., et al., Dietary exposure to silver nanoparticles in Sprague–Dawley rats: Effects on oxidative stress and inflammation. Food and Chemical Toxicology, 2013. 60: p. 297-301.
69. Kim, Y., et al., Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 2010. 7(1): p. 20.
70. Jani, P., et al., Nanoparticle Uptake by the Rat Gastrointestinal Mucosa: Quantitation and Particle Size Dependency. Journal of Pharmacy and Pharmacology, 1990. 42(12): p. 821-826.
71. Loeschner, K., et al., Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and Fibre Toxicology, 2011. 8(1): p. 18.
72. Goebel, H. and J. Muller, Ultrastructural observations on silver deposition in the choroid plexus of a patient with argyria. Acta Neuropathologica, 1973. 26(3): p. 247-251.
73. RUNGBY, J., Experimental Argyrosis: Ultrastructural Localization of Silver in Rat Eye. EXPERIMENTAL AND MOLECULAR PATHOLOGY 1986. 45: p. 22-30.
74. Rungby, J. and G. Danscher, Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathologica, 1983. 60(1-2): p. 92-98.
75. van der Zande, M., et al., Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure. ACS Nano, 2012. 6(8): p. 7427-7442.
76. Walker, F., The deposition of silver in glomerular basement membrane. Virchows Arch B Cell Pathol, 1972. 11(1): p. 90-6.
77. Wallace, W., et al., Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts, in Nanotechnology and Occupational Health, A. Maynard and D.H. Pui, Editors. 2007, Springer Netherlands. p. 23-38.
78. Hadrup, N. and H.R. Lam, Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review. Regul Toxicol Pharmacol, 2014. 68(1): p. 1-7.
79. Sylvie, G. and R. Jean-Max, Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms – A review. Food and Chemical Toxicology, 2015. 77: p. 5863.
80. Theodorou, I.G., et al., Inhalation of silver nanomaterials--seeing the risks. Int J Mol Sci, 2014. 15(12): p. 23936-74.
81. Engelhardt, B. and L. Sorokin, The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol, 2009. 31(4): p. 497-511.
82. Bernacki, J., et al., Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep, 2008. 60(5): p. 600-22.
83. Correale, J. and A. Villa, Cellular elements of the blood-brain barrier. Neurochem Res, 2009. 34(12): p. 2067-77.
84. Wolburg, H., et al., Brain endothelial cells and the glio-vascular complex. Cell Tissue Res, 2009. 335(1): p. 75-96.
85. Furuse, M., et al., Occludin: a novel integral membrane protein localizing at tight junctions. The Journal of Cell Biology, 1993. 123(6): p. 1777-1788.
86. Furuse, M., et al., Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 1994. 127(6 Pt 1): p. 1617-26.
87. Wittchen, E.S., J. Haskins, and B.R. Stevenson, Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem, 1999. 274(49): p. 35179-85.
88. Itoh, M., K. Morita, and S. Tsukita, Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem, 1999. 274(9): p. 5981-6.
89. Haskins, J., et al., ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol, 1998. 141(1): p. 199-208.
90. Hawkins, B.T. and T.P. Davis, The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 2005. 57(2): p. 173-85.
91. Yu, A.S., et al., Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol, 2005. 288(6): p. C1231-41.
92. Kennedy, M.B., Origin of PDZ (DHR, GLGF) domains. Trends in Biochemical Sciences, 1995. 20(9): p. 350.
93. Itoh, M., et al., Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol, 1999. 147(6): p. 1351-63.
94. Roh, M.H., et al., The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem, 2002. 277(30): p. 27501-9.
95. Tsukita, S., M. Furuse, and M. Itoh, Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol, 2001. 2(4): p. 285-93.
96. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 2003. 161(3): p. 653-60.
97. Wolburg, H. and A. Lippoldt, Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular Pharmacology, 2002. 38(6): p. 323-337.
98. Gonzalez-Mariscal, L., A. Betanzos, and A. Avila-Flores, MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol, 2000. 11(4): p. 315-24.
99. Dehouck, M.P., et al., An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem, 1990. 54(5): p. 1798-801.
100. Rubin, L.L., et al., A cell culture model of the blood-brain barrier. J Cell Biol, 1991. 115(6): p. 1725-35.
101. Schinkel, A.H., P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev, 1999. 36(2-3): p. 179-194.
102. McAllister, M.S., et al., Mechanisms of glucose transport at the blood-brain barrier: an in vitro study. Brain Res, 2001. 904(1): p. 20-30.
103. Haseloff, R.F., et al., In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol, 2005. 25(1): p. 25-39.
104. Sobue, K., et al., Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res, 1999. 35(2): p. 155-64.
105. Hayashi, Y., et al., Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997. 19(1): p. 13-26.
106. Abbott, N.J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat, 2002. 200(6): p. 629-38.
107. Bicker, J., et al., Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm, 2014. 87(3): p. 409-32.
108. Toduka, Y., T. Toyooka, and Y. Ibuki, Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity. Environ Sci Technol, 2012. 46(14): p. 7629-36.
109. Lee, Y.H., et al., Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials, 2014. 35(16): p. 4706-15.
110. Ye, D., K.A. Dawson, and I. Lynch, A TEM protocol for quality assurance of in vitro cellular barrier models and its application to the assessment of nanoparticle transport mechanisms across barriers. Analyst, 2015. 140(1): p. 83-97.
111. Ye, D., et al., Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale, 2013. 5(22): p. 11153-65.
112. Dubey, P., et al., Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Adv Colloid Interface Sci, 2015. 221: p. 4-21.
113. Nel, A., et al., Toxic potential of materials at the nanolevel. Science, 2006. 311(5761): p. 622-7.
114. Shi, J., et al., Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF- B pathways. Biomaterials, 2014. 35(24): p. 6657-6666.
115. Guarnieri, D., et al., Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale, 2014. 6(17): p. 10264-73.
116. Montiel-Davalos, A., et al., TiO(2) nanoparticles induce dysfunction and activation of human endothelial cells. Chem Res Toxicol, 2012. 25(4): p. 920-30.
117. Greulich, C., et al., Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg, 2009. 394(3): p. 495-502.
118. Wan, R., et al., DNA Damage Caused by Metal Nanoparticles: Involvement of Oxidative Stress and Activation of ATM. Chemical Research in Toxicology, 2012. 25(7): p. 1402-1411.
119. Ahamed, M., M.S. Alsalhi, and M.K. Siddiqui, Silver nanoparticle applications and human health. Clin Chim Acta, 2010. 411(23-24): p. 1841-8.
120. Obermeier, B., R. Daneman, and R.M. Ransohoff, Development, maintenance and disruption of the blood-brain barrier. Nat Med, 2013. 19(12): p. 1584-96.
121. Chen, Y. and L. Liu, Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev, 2012. 64(7): p. 640-65.
122. Svetlana M. Stamatovic, R.F.K., Steven L. Kunkel and Anuska V. Andjelkovic, Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J of Cell Science, 2003. 116(22): p. 4615-4628.
123. Stamatovic, S.M., et al., Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab, 2005. 25(5): p. 593-606.
124. Zehendner, C.M., et al., Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS One, 2013. 8(12): p. e82823.
125. Chen, M.C., et al., The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials, 2009. 30(34): p. 6629-37.
126. Liu, D., et al., In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Appl Mater Interfaces, 2014. 6(3): p. 2131-6.
127. Mermet, J.M., Is it still possible, necessary and beneficial to perform research in ICP-atomic emission spectrometry? Journal of Analytical Atomic Spectrometry, 2005. 20(1): p. 11.
128. Fassel, V.A., Quantitative Elemental Analyses by Plasma Emission Spectroscopy. SCIENCE, 1978. 202.
129. Li, G., et al., Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng, 2010. 38(8): p. 2499-511.
130. Suzuki, H., T. Toyooka, and Y. Ibuki, Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environmental science & technology, 2007. 41(8): p. 3018-3024.
131. Buchert, M., K. Turksen, and F. Hollande, Methods to examine tight junction physiology in cancer stem cells: TEER, paracellular permeability, and dilution potential measurements. Stem Cell Rev, 2012. 8(3): p. 1030-4.
132. Yuan SY, R.R., Regulation of Endothelial Barrier Function. 2010: Morgan & Claypool Life Sciences, San Rafael (CA).
133. Eudald, C., et al., Hardening of the Nanoparticle–Protein Corona in Metal (Au, Ag) and Oxide (Fe3O4, CoO, and CeO2) Nanoparticles. Small, 2011. 7(24): p. 3479-3486.
134. Murdock, R.C., et al., Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique. Toxicological Sciences, 2008. 101(2): p. 239-253.
135. Coccini, T., et al., Assessment of cellular responses after short- and long-term exposure to silver nanoparticles in human neuroblastoma (SH-SY5Y) and astrocytoma (D384) cells. ScientificWorldJournal, 2014. 2014: p. 259765.
136. Shim, S., et al., Protection by [6]-shogaol against lipopolysaccharide-induced toxicity in murine astrocytes is related to production of brain-derived neurotrophic factor. Food and Chemical Toxicology, 2012. 50(3–4): p. 597-602.
137. Kacimi, R., R.G. Giffard, and M.A. Yenari, Endotoxin-activated microglia injure brain derived endothelial cells via NF-kappaB, JAK-STAT and JNK stress kinase pathways. J Inflamm (Lond), 2011. 8: p. 7.
138. Braun, G.B., et al., Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater, 2014. 13(9): p. 904-11.
139. Gomes, A., E. Fernandes, and J.L. Lima, Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods, 2005. 65(2-3): p. 45-80.
140. Liu, J. and R.H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental science & technology, 2010.
141. AshaRani, P.V., et al., Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, 2009. 3(2): p. 279290.
142. Liu, J., et al., Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano, 2010. 4(11): p. 69036913.
143. Seok, S.M., et al., Fructose-1,6-bisphosphate ameliorates lipopolysaccharide-induced dysfunction of blood-brain barrier. Arch Pharm Res, 2013. 36(9): p. 1149-59.
144. Song, J., et al., Glutathione Protects Brain Endothelial Cells from Hydrogen Peroxide-Induced Oxidative Stress by Increasing Nrf2 Expression. Experimental Neurobiology, 2014. 23(1): p. 93-103.
145. Deshmane, S.L., et al., Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res, 2009. 29(6): p. 313-26.
146. He, F., et al., RhoA and NF-kappaB are involved in lipopolysaccharide-induced brain microvascular cell line hyperpermeability. Neuroscience, 2011. 188: p. 35-47.
147. Van Itallie, C., C. Rahner, and J.M. Anderson, Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest, 2001. 107(10): p. 1319-27.
148. Hanada, S., et al., Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification. Int J Mol Sci, 2014. 15(2): p. 1812-25.
149. Wang, J., et al., Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. NeuroToxicology, 2009. 30(6): p. 926-933.
150. Huang, C.L., et al., Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res, 2015. 136: p. 253-63.
151. 張家誠, 奈米二氧化鈦對於中樞神經系列細胞(小鼠腦神經瘤細胞、小鼠神經微膠質細胞、小鼠星狀膠質細胞)的毒性研究, in 生醫工程與環境科學系. 2014, 國立清華大學: 新竹市. p. 151.
152. Ji, Z., et al., Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environmental Science & Technology, 2010. 44(19): p. 7309-7314.
153. Lai, J.C.K., et al., Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fi broblasts. International Journal of Nanomedicine, 2008. 3(4): p. 533–545.
154. Halamoda Kenzaoui, B., et al., Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J, 2012. 441(3): p. 813-21.
155. Hou, Y., et al., Effects of mesoporous SiO2 , Fe3 O4 , and TiO2 nanoparticles on the biological functions of endothelial cells in vitro. J Biomed Mater Res A, 2014. 102(6): p. 1726-36.
156. Braydich-Stolle, L.K., et al., Crystal structure mediates mode of cell death in TiO2 nanotoxicity. Journal of Nanoparticle Research, 2008. 11(6): p. 1361-1374.
157. Johnston, H.J., et al., Identification of the mechanisms that drive the toxicity of TiO(2 )particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol, 2009. 6: p. 33.