簡易檢索 / 詳目顯示

研究生: 陳威桓
論文名稱: 功率整流器反向回復特性之研究
The Research of Power Rectifier's Reverse Recovey Characterization
指導教授: 龔正博士
Prof. Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 反向回復切換速度硬切換軟切換反向回復時間
外文關鍵詞: reverse recovery, di/dt, hard-switching, soft-switching, reverse recovery time
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    功率半導體元件在現今社會上是不可或缺的電子元件,整流器的發展也日新月異。而其最重要的特性之一,是在動態切換時的反向回復特性,因為反向回復過程產生的電壓或電流突波,容易造成應用電路的損毀,針對此一特性深入探討,以方便使用者選擇整流器之優劣,如此用以保護整體的電路。
    利用三種不同之量測電路,比較整流器的切換速度及反向回復特性。(1.) Clamped inductive switching circuit測試電路:方便使用者簡易了解整流器反向回復特性之優劣;(2.) Hard-switching dc-dc buck converter測試電路:更進一步強化測試電路,使使用者可以簡易調變不同的測試環境,用以客觀比較不同整流器的反向回復能力之優劣;(3.) Soft-switching dc-dc buck converter測試電路:簡易外加振盪電容與振盪電感改變Hard-switching dc-dc buck converter之測試電路結構,除了了解整流器本身特性,可以利用電路降低反向電壓電流突波對電路的破壞程度。
    現今各界對反向回復時間之定義方式各有不同,針對不同的反向回復時間定義,討論其對整流器 與 之影響,並尋找出最適合之時間定義,方便使用者明確辨別整流器之優劣,如此可省去親自量測之步驟。


    ABSTRACT
    One of the most important characterization of rectifiers is the reverse recovery characteristic. We had to avoid the current and voltage overshoot caused by reverse recovery process damaging the circuit component.
    Using three testing circuit to compare the switching speed and the reverse recovery characteristic of rectifiers. First is the clamped inducitive switching circuit , discriminating is easy discriminating between good and bad of recovery characteristics. Second, Hard-
    Switching circuit make the comparison of rectifiers recovery ability easy by lightly adjustments of testing conditions. Final, soft-switching circuit is flexibly modified from hard-switching to ZVC by addition of a resonant capacitor and a resonant inductor, Show us the advantages of ZVC is protecting the circuit configuration.
    Discussing the influence of Trr and Qrr by the different definitions of the reverse recovery time, servicing all the rectifiers user clearly to make out good and bad of recovery characteristics without measuring personally.

    目 錄 第一章、研究動機.........................................1 第二章、Device的發展與結構...............................2 2.1 功率元件的應用與發展............................2 2.2 整流器的種類及演進..............................4 2.2.1 低電壓整流器..............................4 2.2.2 高電壓整流器..............................5 2.3 蕭基整流器的結構及操作原理......................7 2.3.1 金屬半導體接觸面..........................7 2.3.2 順偏導通特性..............................8 2.3.3 反向阻隔特性.............................10 2.3.4 Trade-off 曲線...........................11 2.3.5 功率損耗.................................12 2.4 P-i-N整流器的結構及操作原理....................13 2.4.1 P-i-N整流器結構..........................13 2.4.2 順偏導通特性.............................14 2.4.3 反偏特性.................................16 2.4.4 反向回復特性.............................16 第三章、反向回復時間之定義及測試電路比較................24 3.1 反向回復時間之規格比較.........................24 3.2 反向回復過程之參數定義.........................25 3.2.1 反向回復電荷之定義.......................25 3.2.2 反向回復時間之定義.......................26 3.3 反向回復時間之測試電路比較.....................31 3.3.1 測式電路(I):CIS Circuit.................31 3.3.2 測式電路(II):JEDEC Standard.............32 3.3.3 測式電路(III):Hard-Switching Circuit....33 3.3.4 測式電路(VI):Soft-Switching Circuit.....37 第四章、反向回復時間之量測結果..........................45 4.1 CIS Circuit之量測結果..........................45 4.2 Hard-switching Circuit之量測結果...............46 4.2.0 Hard-switching Circuit之公式驗證.........46 4.2.1 IF與di/dt之關係..........................47 4.2.2 RG與di/dt之關係..........................48 4.2.3 不同功率開關之比較.......................49 4.2.4 不同DUT Trr 之差異.......................50 4.3 Soft-switching Circuit之量測結果...............51 4.3.1 Lres與di/dt之關係........................51 4.4 反向回復時間...................................53 4.4.1 Trr之定義比較............................53 4.4.2 Qrr與Trr之關係...........................55 4.4.3 Hard-switching Circuit與通用公司之比較...57 第五章、結 論..........................................66 參考文獻................................................67

    參考文獻
    [1] B. J. Baliga, “power semiconductor devices,” Boston, MA : PWS 1996.

    [2] B. J. Baliga, “The future of power semiconductor device technology,” IEEE Electron Device Lett., vol.89, pp.822–831, June 2001.

    [3] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Transaction on Electron Devices, vol.43, pp.1717–1721, Oct. 1996.

    [4] S. M. SZE, “Semiconductor Device Physics and Technology,” John Wiley And Sons , NEW YORK, 2002.

    [5] B. K. Bose, ”Modem Power Electronics-Evolution, Technology, and Application,” IEEE Press , 1992.

    [6] S. K. Ghandhi, “Semiconductor Power Device,” Wiley , NEW YORK, 1997.

    [7] V. A . K. Temple, ”MOS controlled thyristors,” IEEE International Electron Devices Meeting Digest , pp. 282 – 285, 1984.

    [8] M. Mehrotra and B.J. Baliga, “The Trench MOS-barrier Schottky,“ IEEE IEDM, pp. 93-675 – 93-678, 1993.

    [9] Shankar Sawant and B.Jayant Balia “A comparative study of high voltage power rectifiers,” IEEE, pp. 153 – 156, 1999.

    [10]W.Schottky, “Halbleitertheorie der Sperrchicht,” Naturwissenschaften, 26, 843 (1938).

    [11] S. M. Sze, “Physical of Semiconductor Devices,” 2nd ed., New York, Wiely, 1981.

    [12] Kipp Jay Schoen, Terry M. Woodal, James A. Cooper. And Michael R. Melloch, “Design Consideration and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers,” IEEE, pp.1595 – 1603
    [13] J. N. Su and A. J. Steckl, “Fabrication of high-voltage SiC Schottky
    barrier diodes by Ni metallization,” in Proc. 1995 Conf. Silicon Carbide
    and Rel. Mater., pp. 697–700.

    [14] M. Bhatnagar, H. Nakanishi, S. Bothra, P. K. McLarty, and B. J. Baliga, “Edge terminations for SiC high-voltage Schottky rectifiers,”
    Power Semiconductor Devices and IC’s, pp. 89–94, 1993.

    [15] K. Ueno, T. Urushidani, K. Hashimoto, and Y. Seki, “The guard-ring
    termination for the high-voltage SiC Schottky barrier diodes,” IEEE Electron Device Lett., vol. 16, pp. 331–332, July 1995.

    [16] D. Alok, B. J. Baliga, and P. K. McLarty, “A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage,” IEEE Electron Device Lett., vol. 15, pp. 394–395, Oct. 1995.

    [17] A. Itoh, T. Kimoto, and H. Matsunami, “Excellent reverse blocking
    characteristics of high-voltage 4H-SiC Schottky rectifiers with boronimplanted edge termination,” IEEE Electron Device Lett., vol. 17, pp. 139–141, Mar. 1996.

    [18] Kent Walters, Corpotate Appliciations Engineer at Microsemi “Rectifier Reverse Switching Performance,” MicroNote Series 302

    [19] JEDEC Standard NO.24 – 10 “Test Method for Measurement of Reverse Recovery Time for Power MOSFET Drain – Source Devices.”

    [20] C. Winterhalter, S. Pendharkar, and Krishna Shenai, “A Novel Circuit for Accurate Characterization and Modeling of the Reverse Recovery of High-Power High-Speed Rectifiers,” IEEE Transaction on Electron Devices, vol. 13, NO. 5, pp. 924 – 931, Sep. 1998

    [21] Krishna Shenai, Malay Trivedi, Philip G. Neudeck,”Characterization of Hard- and Soft-Switching Performance of High-Voltage Si and 4H–SiC PiN Diodes,” IEEE Transaction on Electron Devices, vol. 49, NO. 9, pp. 1618 – 1656, Sep. 2002

    [22] Alberto Guerra, Kphji Andoh, Silvestro Fimiani, “Ultra-fast Recovery Diodes Meet Today’s Requirement for High Frequency Operation and Power Ratings in SMPS Applications,” International Rectifier.

    [23] “IRF 16CTU04 datasheet” International Rectifier.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE