研究生: |
林洸銓 |
---|---|
論文名稱: |
主動式與被動式微混合器之最適化設計 Adaptive Design of Active and Passive Micromixers |
指導教授: |
陳理定
楊鏡堂 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 生物晶片 、微混合器 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以數值流力與實驗觀測探討生物晶片的微混合器設計,針對微混合器系統的微幫浦與主流道兩個次元件探討,分別設計產生混合的方法。微幫浦設計上採用主動式脈衝驅動流體達到混合,在兩個流道入口以相位差180o造成兩股流體之間的最大動量差,並且以週期性的交錯來提升兩股流體的混合效率。在主流道的設計上採用被動式蜿蜒形結構增強法,放置交錯排列的十個擋體於主流道的兩側,使得主流道有擴張與收縮的效應來增強混合效率。數值的計算部份,則以SIMPLEC模式法求解,針對兩個不同的混合增強方式設計不同的邊界條件與初始條件,並分析流線場與濃度場。脈衝流混合增強法的研究參數為雷諾數Re與史卓荷數St,蜿蜒形結構混合增強法的研究參數為雷諾數Re與流道擴張收縮比A/R。研究結果顯示脈衝流在低雷諾數會產生動量不足,太高的雷諾數會使得流體混合時間太短。史卓荷數在St=12.6可得到較好的混合結果。在被動式蜿蜒形結構的分析上顯示,當流道的擴張與收縮比A/R=0.25可增加微混合器的使用範圍,兩股流體的介面因為拉長,使得流體的混合在較低的雷諾數Re=3仍然由擴散來主導,在較高的雷諾數Re=30,則藉由迴流區的增長使得對流的效應主導混合。在A/R=0.25∼0.5的範圍,流體的混合效果隨著雷諾數變大而增加,在A/R=0.75∼1的範圍,流體的混合效果隨著雷諾數變大而減低。
第七章 參 考 文 獻
Beebe, D. J., Adrian, R. J., Olsen, M. G., Stremler, M. A., Jo, B. H., and Aref, H., “Passive Mixing in Microchannels: Fabrication and Flow Experiments,” Journal of Mechanics and Industry, Vol. 2, pp. 343-348, 2001.
Chang, C. C., Yang, R. J., “Computational Analysis of Electrokinetically Driven Flow Mixing in Microchannels with Patterned Blocks,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 550-558, 2004.
Devahastin, S., and Mujumdar, A. S., “A Numerical Study of Flow and
Mixing Characteristics of Laminar Confined Impinging Streams,” Chemical Engineering Journal, Vol. 85, pp. 215-223, 2002.
Desmukh, A. A., Liepmann, D., and Pisano, A. P., “Continuous Micromixer with Pulsatile Micropumps,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 2000.
Glasgow, I., Aubry, N., “Enhancement of Microfludic Mixing Using Time Pulsing,” Journal of Lab on a Chip, Vol. 3, pp. 114-120, 2003.
Gobby, D., Angeli, P., and Gavriilidis, A., “Mixing Characteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengingeering, Vol. 11, pp. 126-132, 2001.
Hong, S., Thiffcault, J. L., Frechette, L., and Modi, V., “Numerical Study of
Mixing in Microchannels with Patterned Zeta Potential Surfaces,” 2003 ASME International Mechanical Engineering Congresss & Exposition, Washington,
D.C., Nov. 16-21, 2003.
Ismagilov, R. F., Rosmarin, D., Kenis, P. J. A., Chiu, D. T., Zhang, W., Stone, H. A., and Whitesides, G. M., “Pressure-Driven Laminar Flow in Tangential Microchannels: An Elastomeric Micofluidic Switch,” Analytical Chemistry, Vol. 73, No. 19, pp. 4682-4687, Oct., 2001.
Jen, C. P., Wu, C. Y., Lin, Y. C., and Wu, C. Y., “Design and Simulation of the Micromixer with Chaotic Advection in Twisted Microchannels,” Journal of Lab on a Chip, Vol. 3, pp. 77-81, 2003.
Kang, T. G., and Kwon, T. H., “Colored Particle Tracking Method for Mixing Analysis of Chaotic Micromixers,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 891-899, 2004.
Kim, D. S., Lee, S. W., Kwon, T. H., and Lee, S. S., “A Barrier Embedded Chaotic Micromixer,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 798-805, 2004.
Koch, M., Witt, H., Evans, and A. G. R., and Brunnschweiler, A., “Improved Characterization Technique for Micromixers,” Journal of Micromechanics and Microengingeering, Vol. 9, pp. 156-158, 1999.
Koch, M., Chatelain, D., Evans, A. G. R., and Brunnshweiler, A., “Two Simple Micromixers Based on Silicon,” Journal of Micromechanics and Microengingeering, Vol. 8, pp. 123-126, 1998.
Koch, M., Schabmueller, C. G. J., Evans, A. G. R., and Brunnshweiler, A., “Micromachined Chemical Reaction System,” Sensor and Actuators, Vol. 74, pp. 207-210, 1999.
Kim, S. Y., Kang, B. H., “Forced Convection Heat Transfer from Two Heated Blocks in Pulsating Channel Flow,” International Journal of Heat Mass Transfer, Vol. 41, pp. 625-634, 1998.
Kenwright, D. N., Lane, D. A., “Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition,” IEEE Transaction on Visualization and Computer Graphics, Vol. 2, No. 2, 1996.
Lu, L. H., Ryu, K. S., and Liu, C., “A Magnetic Microstirrer and Array for Microfluidic Mixing,” Journal of Microelectromechanical System, Vol. 11, No. 5, 2002.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Aref, R. A. H., and Beebe, D. J., Member IEEE, “Passive Mixing in a Three- Dimensional Serpentine Microchannel,” Journal of Microelectromechanical System, Vol. 9, No. 2, 2002.
Lee, Y. K., Deval, J., Tabeling, P., and Ho, C. M., “Chaotic Mixing in
Electrokinetically and Pressure Driven Micro Flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, Jan., 2001.
Meinhart, C. D., Wereley, S. T., Santiago, J. G., “PIV Measurements of a Microchannel Flow,” Experiments in Fluids, Vol. 27, pp. 414-419, 1999.
Niu, X., and Lee, Y. K., “Efficient Spatial-Temporal Chaotic Mixing in
Microchannels,” Journal of Micromechanics and Microengingeering. Vol. 13, pp. 454-462, Apr., 2003.
Stroock, A. D., Dertinger, S. K., Whitesides, and G. M., and Ajdari, A.,
“Patterning Flows Using Grooved Surfaces,” Analytical Chemistry, Vol. 74,
No. 20, pp. 5306-5312, 2002.
Stroock, A. D., Dertinger, S. K., Ajdar, A., Mezic, L., Stone, H. A., and Whitesides, G. M., “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651, 2002.
Schwesinger, N., Frank, T., and Wurmus, H., “A Modular Microfluid System with an Integrated Micromixer,” Journal of Micromechanics and Microengingeering, Vol. 6, pp. 99-102, 1996.
Wang, H., Lovenitti, P., Harvey, E., and Masood, S., “Numerical Investigation of Mixing in Microchannels with Patterned Grooves,” Journal of
Micromechanics and Microengingeering, Vol. 13, pp. 801-808, 2003.
CFD-ACE(U) User Manual, Version 6.4, CFD Research Corporation, 2000.