研究生: |
林采蓉 Lin, Tsai-Jung |
---|---|
論文名稱: |
超晶格氧化鉿鋯結合矽鍺/矽堆疊通道N型與P型環繞式閘極多位元操作鐵電記憶體之研究 Study on Super-Lattice HfO2/ZrO2 Combined with SiGe/Si Stacked Channel N- and P-type Fe-GAAFETs with Multi-bit Operation for Memory |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: |
侯福居
Hou, Fu-Ju 巫勇賢 Wu, Yung-Hsien 蕭健男 Hsiao, Chien-Nan |
學位類別: |
碩士 Master |
系所名稱: |
半導體研究學院 - 半導體研究學院 College of Semiconductor Research |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 矽鍺 、多位元 、環繞式閘極 、鐵電記憶體 、超晶格氧化鉿鋯 |
外文關鍵詞: | SiGe, Multi-bit, GAAFET, FeFET, SL-HZO |
相關次數: | 點閱:29 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子計算機在人工智慧與物聯網應用中的普及,數據處理量顯著增加,導致系統面臨馮紐曼瓶頸。為了減少數據搬運時間,記憶體內運算成為一個關鍵解決方案。以氧化鉿為基底的鐵電記憶體,由於其高密度、高速讀寫和低功耗等優勢,被認為是實現記憶體內運算的理想選擇。
本研究採用高遷移率材料矽鍺與傳統電晶體的通道材料矽進行週期性磊晶,形成的超晶格異質結構,作為鐵電非揮發性記憶體之通道。通過利用矽鍺與矽之間晶格常數差異產生的應變效應與量子效應,能進一步提升記憶體元件之特性表現。
本研究首先比較了傳統矽和矽鍺/矽超晶格結構作為鰭式鐵電非揮發性記憶體的通道。矽鍺/矽超晶格結構結合高遷移率材料矽鍺以及超晶格異質結構所形成的量子效應,提升鐵電記憶體之操作速度與記憶窗口,並實現多位元操作,有效增進了鐵電非揮發性記憶體的電性表現。
接續以上研究,將矽鍺/矽超晶格通道結構應用於環繞式閘極鐵電非揮發性記憶體。結合高介電常數之氧化鉿/氧化鋯進行超晶格堆疊(SL HZO)作為其閘極氧化層,製作了N型與P型元件。由於環繞式閘極結構具備更佳的閘極控制能力,可降低鐵電非揮發性記憶體之操作電壓,尤其在P型元件中更為顯著,使用± 2 V、100 ns的脈衝電壓即可獲得2.5 V的記憶窗口;而在N型元件中,使用± 4.5 V、100 ns的脈衝電壓可獲得2.25 V的記憶窗口,相較於前一部分所討論之鰭式鐵電非揮發性記憶體,具有更低的操作電壓。值得一提的是,由於P型元件操作電壓較低,其耐用度可達到107次循環、耐久度可達104秒以上,並仍保持極佳的元件特性。
總結而言,使用矽鍺/矽超晶格通道結構結合高介電常數之超晶格氧化鉿鋯閘極氧化層的鐵電非揮發性記憶體展示了出色的電性表現和可靠度,能進行多位元操作,並與現今CMOS製程相容,在實現記憶體內運算方面具有極高的潛力。
With the proliferation of computers in artificial intelligence and Internet of Things (IoT) applications, the volume of data processing has significantly increased, leading to the von Neumann bottleneck. To reduce data transfer time, in-memory computing has become a critical solution. FeFET based on HfO2 are considered ideal for implementing in-memory computing due to their high density, high speed, and low power consumption.
This study employs periodic epitaxy of high-mobility material SiGe and Si as channel materials to form super-lattice heterostructures, serving as the channels for FeFET. By leveraging the strain effect resulting from the lattice constant differences between Si and SiGe, a quantum effect is created, further enhancing the operational speed of the devices.
Initially, this study compared the use of Si and SiGe/Si super-lattice structures as channels for Fe-FinFET. The SiGe/Si super-lattice structure, combining the high mobility of SiGe and the quantum effect from the super-lattice heterostructure, improved the operational speed and memory window of FeFET, enabled multi-bit operation, and effectively enhanced the electrical performance of FeFET.
Building on the previous research, the SiGe/Si super-lattice channel structure was applied to Fe-GAAFET. By integrating high dielectric constant (high-κ) HfO2/ ZrO2 super-lattice stacks (SL HZO) as the gate oxide, N-type and P-type devices were fabricated. Due to the superior gate control capability of the GAA structure, the operating voltage of FeFET was reduced, particularly in P-type devices, where a ± 2 V, 100 ns pulse voltage achieved a memory window of 2.5 V. In N-type devices, a ± 4.5 V, 100 ns pulse voltage achieved a memory window of 2.25 V, indicating a lower operating voltage compared to the Fe-FinFET discussed earlier. Notably, the P-type device demonstrated endurance up to 107 cycles and retention exceeding 104 seconds while maintaining excellent device characteristics due to the lower operating voltage.
In summary, FeFET using SiGe/Si super-lattice channel structure combined with SL HZO as oxide gate oxide demonstrates outstanding electrical performance and reliability, enabled multi-bit operation, and was compatible with current CMOS processes, demonstrating high potential for in-memory computing applications.
[1] Chen, An. "A review of emerging non-volatile memory (NVM) technologies and applications." Solid-State Electronics 125 (2016): 25-38.
[2] Von Neumann, John. "First Draft of a Report on the EDVAC." IEEE Annals of the History of Computing 15.4 (1993): 27-75.
[3] Hur, Rotem Ben, and Shahar Kvatinsky. "Memory processing unit for in-memory processing." 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2016.
[4] Backus, John. "Can programming be liberated from the von Neumann style? A functional style and its algebra of programs." Communications of the ACM 21.8 (1978): 613-641.
[5] Edwards, Jonathan, and Simon O'Keefe. "Eager recirculating memory to alleviate the von Neumann Bottleneck." 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2016.
[6] Zou, Xingqi, et al. "Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology." Science China Information Sciences 64.6 (2021): 160404.
[7] Bottleneck, Neumann. "mMPU—A Real Processing-in-Memory Architecture to Combat the von." Applications of Emerging Memory Technology: Beyond Storage 63 (2019): 191.
[8] Veeraraghavan, Surya, and Jerry G. Fossum. "Short-channel effects in SOI MOSFETs." IEEE Transactions on Electron Devices 36.3 (1989): 522-528.
[9] Claeys, Cor, and Eddy Simoen, eds. Germanium-based technologies: from materials to devices. elsevier, 2011, p368.
[10] Yao, Yi-Ju, et al. "High-Performance P-and N-Type SiGe/Si Strained Super-Lattice FinFET and CMOS Inverter: Comparison of Si and SiGe FinFET." Nanomaterials 13.8 (2023): 1310.
[11] Lee, C. H., et al. "Toward high performance SiGe channel CMOS: Design of high electron mobility in SiGe nFinFETs outperforming Si." 2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 2018.
[12] Valasek, Joseph. "Piezo-electric and allied phenomena in Rochelle salt." Physical review 17.4 (1921): 475.
[13] Fields, Shelby S., et al. "Phase-exchange-driven wake-up and fatigue in ferroelectric hafnium zirconium oxide films." ACS applied materials & interfaces 12.23 (2020): 26577-26585.
[14] Genenko, Yuri A., et al. "Mechanisms of aging and fatigue in ferroelectrics." Materials Science and Engineering: B 192 (2015): 52-82.
[15] Böscke, T. S., et al. "Ferroelectricity in hafnium oxide thin films." Applied Physics Letters 99.10 (2011).
[16] Choi, J. H., Y. Mao, and J. P. Chang. "Development of hafnium based high-k materials—A review." Materials Science and Engineering: R: Reports 72.6 (2011): 97-136.
[17] Ni, Kai, et al. "Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric near morphotropic phase boundary." 2019 IEEE international electron devices meeting (IEDM). IEEE, 2019.
[18] Weng, Zeping, et al. "Phase Transitions and Anti-Ferroelectric Behaviors in Hf 1-x Zr x O 2 Films." IEEE Electron Device Letters (2023).
[19] Park, Min Hyuk, et al. "A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants." Journal of Materials Chemistry C 5.19 (2017): 4677-4690.
[20] Muller, Johannes, et al. "Ferroelectricity in simple binary ZrO2 and HfO2." Nano letters 12.8 (2012): 4318-4323.
[21] Park, Min Hyuk, and Cheol Seong Hwang. "Fluorite-structure antiferroelectrics." Reports on Progress in Physics 82.12 (2019): 124502.
[22] Ferrari, S., and G. Scarel. "Oxygen diffusion in atomic layer deposited ZrO 2 and HfO 2 thin films on Si (100)." Journal of applied physics 96.1 (2004): 144-149.
[23] Peng, Yue, et al. "HfO2–ZrO2 Superlattice Ferroelectric Field-Effect Transistor With Improved Endurance and Fatigue Recovery Performance." IEEE Transactions on Electron Devices 70.7 (2023): 3979-3982.
[24] Liao, C-Y., et al. "Superlattice HfO 2-ZrO 2 based Ferro-Stack HfZrO 2 FeFETs: Homogeneous-Domain Merits Ultra-Low Error, Low Programming Voltage 4 V and Robust Endurance 10 9 cycles for Multibit NVM." 2022 International Electron Devices Meeting (IEDM). IEEE, 2022.
[25] Peng, Yue, et al. "HfO 2-ZrO 2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability." IEEE Electron Device Letters 43.2 (2021): 216-219.
[26] Liang, Yan-Kui, et al. "ZrO 2-HfO 2 Superlattice Ferroelectric Capacitors with Optimized Annealing to Achieve Extremely High Polarization Stability." IEEE Electron Device Letters 43.9 (2022): 1451-1454.
[27] Mooney, P. M. "Strain relaxation and dislocations in SiGe/Si structures." Materials Science and Engineering: R: Reports 17.3 (1996): 105-146.
[28] Lee, Minjoo L., et al. "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors." Journal of applied physics 97.1 (2005).
[29] Yang, Lianfeng, et al. "Si/SiGe heterostructure parameters for device simulations." Semiconductor Science and Technology 19.10 (2004): 1174.
[30] Rim, Kern, et al. "Strained Si NMOSFETs for high performance CMOS technology." 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No. 01 CH37184). IEEE, 2001.
[31] Welser, J., et al. "Strain dependence of the performance enhancement in strained-Si n-MOSFETs." Proceedings of 1994 IEEE International Electron Devices Meeting. IEEE, 1994.
[32] Agrawal, A., et al. "Gate-all-around strained Si 0.4 Ge 0.6 nanosheet PMOS on strain relaxed buffer for high performance low power logic application." 2020 IEEE International Electron Devices Meeting (IEDM). IEEE, 2020.
[33] Wang, Guilei. Investigation on SiGe selective epitaxy for source and drain engineering in 22 nm CMOS technology node and beyond. Springer Nature, 2019.
[34] Mikolajick, Thomas, et al. "Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors." Mrs Bulletin 43.5 (2018): 340-346.
[35] Böscke, T. S., et al. "Ferroelectricity in hafnium oxide thin films." Applied Physics Letters 99.10 (2011).
[36] Wang, Jianfeng, et al. "ALL-MASK: A Reconfigurable Logic Locking Method for Multicore Architecture with Sequential-Instruction-Oriented Key." arXiv preprint arXiv:2206.08087 (2022).
[37] Toprasertpong, Kasidit, Mitsuru Takenaka, and Shinichi Takagi. "Memory window in ferroelectric field-effect transistors: Analytical approach." IEEE Transactions on Electron Devices 69.12 (2022): 7113-7119.
[38] Deng, Shan, et al. "Unraveling the dynamics of charge trapping and de-trapping in ferroelectric FETs." IEEE Transactions on Electron Devices 69.3 (2022): 1503-1511.
[39] Ni, Kai, et al. "Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance." IEEE Transactions on Electron Devices 65.6 (2018): 2461-2469.
[40] Yurchuk, Ekaterina, et al. "Origin of the endurance degradation in the novel HfO 2-based 1T ferroelectric non-volatile memories." 2014 IEEE International Reliability Physics Symposium. IEEE, 2014.
[41] Morita, Mizuho. "Native oxide films and chemical oxide films." Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. 543-558.
[42] Mulaosmanovic, Halid, et al. "Impact of read operation on the performance of HfO 2-based ferroelectric FETs." IEEE Electron Device Letters 41.9 (2020): 1420-1423.
[43] O. D. Trapp and D. S. Peck, Accelerated Testing Handbook, 5th ed., Technology Associates and D. S. Peck Consulting Corp., Eds., 1987.
[44] De Salvo, Barbara, et al. "Experimental and theoretical investigation of nonvolatile memory data-retention." IEEE Transactions on Electron Devices 46.7 (1999): 1518-1524.
[45] Hellings, Geert, et al. "Si/SiGe superlattice I/O FinFETs in a vertically-stacked gate-all-around horizontal nanowire technology." 2018 IEEE Symposium on VLSI Technology. IEEE, 2018.
[46] Liao, C-Y., et al. "Multibit ferroelectric FET based on nonidentical double HfZrO 2 for high-density nonvolatile memory." IEEE Electron Device Letters 42.4 (2021): 617-620.
[47] Rusu, Alexandru, et al. "Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification." 2010 international electron devices meeting. IEEE, 2010.
[48] Malvika, Bijit Choudhuri, and Kavicharan Mummaneni. "A review on a negative capacitance field-effect transistor for low-power applications." Journal of Electronic Materials 51.3 (2022): 923-937.
[49] Lee, Kitae, et al. "Ferroelectric-gate field-effect transistor memory with recessed channel." IEEE Electron Device Letters 41.8 (2020): 1201-1204.
[50] Ni, Kai, et al. "Impact of extrinsic variation sources on the device-to-device variation in ferroelectric FET." 2020 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2020.