研究生: |
許義昌 Hsu, Yi-Chang |
---|---|
論文名稱: |
利用玻璃回融製程實現全差分式加速計 Design and Implement of Fully-Differential Accelerometer by Using Glass-Reflow Process |
指導教授: |
方維倫
Fang, Weileun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 玻璃回融 、加速計 |
外文關鍵詞: | glass reflow, accelerometer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
微機電系統(Micro-electro-mechanical system)發展至今,很多元件都已臻於成熟並大量應用在我們日常生活所使用的電子系統當中。近年來由於汽車安全保護系統的大量應用以及手機多變的娛樂功能,造成加速計實用性與必要性也相對提高,而利用MEMS製程可以達到微小化、批量製造與系統整合等優點。本研究利用微機電製程實現單軸加速計,透過玻璃回融技術實現全差分式電性連接,並配合體形微加工方式製作出高深寬比之加速計質量塊與感測電極,提升元件靈敏度。整顆元件結合上述優點所測得靈敏度為7.38mV/G,解析度為0.43mG/rtHz,非感測軸向其解耦合分別為Y軸12%Z軸14%。
[1] http://www.vr.ncue.edu.tw/sfs3a/modules/board/board_show.php?b_id=1321
[2] http://www.gaforum.org/showthread.php?t=67223&page=32
[3] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E.Wuganuma and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities”, Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
[4] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer”, IEEE Transactions on Electronic Devices, 26, pp 1911-1917, 1979.
[5] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M.Fitzgerald, L. Zhang, N. I. Maluf and T. W. Kenny, “A high–performance planar piezoresistive accelerometer”, Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
[6] B. Puers and W. Sansen, “A new uniaxial accelerometer in siliconbased on the piezojunction effect”, IEEE Transactions on Electronic Devices, 35, pp 764-770, 1988.
[7] P. Scheeper, J. O. Gulloy and M. Kofoed, “A piezoelectric triaxial accelerometer”, Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
[8] T. Storgaard-Larsen, S. Bouwstra and O. Leistiko, “Optomechanical accelerometer based on strain sensing by a bragg grating in a planar waveguide”, Sensors and Actuators A, 52, pp 25-32, 1996.
[9] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W.Kenny, J. D. Grade and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution”, Journal of Microelectromechanical Systems, 7, pp 235-244, 1998.
[10] M.A. Lemkin, W.A. Clark, and T. Juneau, “Integrated Micro-Electro-Mechanical Sensor Development for Inertial Applications Z-Axis Gyro XY-Axis Gyro,” Symposium A Quarterly Journal In Modern Foreign Literatures, 6, pp 1-8, 1998.
[11] J. Bustillo, R. Howe, and R. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, 86, pp 1552-1574, 1998.
[12] J. Yasaitis, M. Judy, T. Brosnihan, P. Garone, N. Pokrovskiy, D. Sniderman, S. Limb, R. Howe, B. Boser, M. Palaniapan, and others, “A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS,” Micromachining and Microfabrication Process Technology VIII, San Jose, CA, USA, January, 2003, pp 145–154.
[13] F. Rudolf, A. Jornod, and P. Benze, “Silicon microaccelerometers,” Transducer 1987, Tokyo, Japan, June, 1987, pp 376-379.
[14] B. Boser and R. T. Howe, “Surface micromachined accelerometers,” IEEE Journal of Solid-State Circuits, 31, pp 366-375, 1996.
[15] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications,” Transducer 1995, Stockholm, Sweden, June , 1995, pp 593-596.
[16] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Electronic Manufacturing Technology Symposium 2007, San Jose, CA, October, 2007, pp 290-293.
[17] W. Yun, R. T. Howe, and P. R. Gray, “Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, June, 1992, pp 126-131.
[18] C. Lu, M. Lemkin, and B. Boser, “A monolithic surface micromachined accelerometer with digital output,” IEEE Journal of Solid-State Circuit, 30, pp 1367-1373, 1995.
[19] M. Lemkin, B. Boser, and J. Smith, “A 3-axis surface micromachined ΣΔ accelerometer,” ISSCC 1997, San Francisco, CA, USA, February, 1997, pp 202-203.
[20] “ADXL05-monolithic accelerometer with signal conditioning,” Analog Devices, Norwood, MA, data sheet, 1995.
[21] S. Ghosh and M. Bayoumi, “On Integrated CMOS-MEMS System-on-Chip,” NEWCAS 2005, June, 2005, pp 276-279.
[22] G. Zhang, H. Xie, L. de Rosset, and G. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” MEMS 1999, Orlando, FL, USA, January, 1999, pp 17–21.
[23] C. Sun, C. Wang, D. Liu, M. Lu, W. Fang, C. Liang, H. Hsieh, and T. Shing, "A Novel CMOS MEMS Accelerometer with Four Sensing Finger Arrays," Sensors 2006, Daegu, October, 2006, pp 1119–1122.
[24] M. H. Tsai, C. Wang, and W. Fang, “A novel out-of-plane accelerometer with fully-differential sensing circuit and sub-micron gap,” Transducer 2007, Lyon, France, June 2007, pp 1487-1490.
[25] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, 14, January, pp 559-566, 2004.
[26] H. Qu, D. Fang, H. Xie, “A Monolithic CMOS-MEMS 3-axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensor Journal, 8, pp 1511-1518, 2009.
[27] H. Xie, and G. K. Fedder, “A CMOS Z-axis capacitive accelerometer with comb-finger sensing,” MEMS 2000, Miyazaki, Japan, January, 2000, pp 496-501.
[28] H. Luo, G. K. Fedder, and L. R. Carley, “A 1mG lateral CMOS-MEMS accelerometer,” MEMS 2000, Miyazaki, Japan, January, 2000,pp 502-507.
[29] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers,” ISSCC 2002, San Francisco, CA, USA, February, 2002, pp 428-430.
[30] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” Journal of Microelectromechanical systems, 11, pp 93-101, 2002.
[31] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, 14, pp 559-566, 2004.
[32] Y. Fang, A. Wung, T. Mukherjee, and G. Fedder, “A SI-CMOS-MEMS process using back-side grinding,” MEMS 2010 Wanchai, Hong Kong, January, 2010, pp 364-367.
[33] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and implementation of high performance CMOS-MEMS capacitive sensors,” Transducer 2009, Denver, US, June, 2009, pp 672-675.
[34] C. M. Sun, M. H. Tsai, C. Wang, Y. C. Liu, and W. Fang, “Implementation of a monolithic TPMS using CMOS-MEMS technique,” Transducer 2009, Denver, CO, USA, June, 2009, pp 1730-1733.
[35] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” Journal of Micromechanics and Microengineering, 17, pp 1275-1280, 2007.
[36] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, 19, pp 1-7, 2009.
[37] A. Selvakumar, and K. Najafi, “A high-sensitivity z-axis capacitive silicon microaccelerometer with a torsional suspension,” Journal of Microelectromechanical Systems, 7, pp. 192-200, 1998.
[38] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, 9, pp 544-550 , 2000.
[39] J. Chae, H. Kulah, and K. Najafi, “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer,” Journal of Micromechanics and Microengineering, 15, pp 336-345, 2005.
[40] B. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW closed-loop 16 micro-gravity CMOS SOI accelerometer,” IEEE Journal of Solid-State Circuits, 41, pp 2983–2991, 2006.
[41] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter,” Sensor and Actuator A, 75, pp 77-85, 1999.
[42] B. V. Amini, S, Pourkamali, and F. Ayazi, “A high resolution, stictionless, CMOS compatible SOI accelerometer with low noise, low power, 0.25µm CMOS interface,” MEMS 2004, Maastricht, Netherlands, January, 2004, pp 572-575.
[43] T. Tsuchiya, and H. Funabashi, “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensor and Actuator A, 116, pp 378-383, 2004.
[44] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer,” IEEE Journal of Solid-State Circuit, 41, pp 2983-2991, 2006.
[45] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-micro-gravity in-plane accelerometer with reduced capacitive gaps and extra seismic mass,” Journal of Microelectromechanical systems, 16, pp 1036-1043, 2007.
[46] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” Transducer 2007, Lyon, France, June, 2007, pp 147-150.
[47] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and fabrication of a differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” IEEE Transactions on Electrical and Electronic Engineering, 4, pp 345-351, 2009.
[48] C. Lin, C. Hsu, H. Yang, W.C. Wang, and W. Fang, “Implementation of SOG devices with embedded through-wafer silicon vias using a glass reflow process for wafer-level 3D MEMS integration,” MEMS 2008,Tucson, AZ, January, 2008, pp 802-805.
[49] http://www.irvine-sensors.com/pdf/MS3110%20Datasheet%20USE.pdf