簡易檢索 / 詳目顯示

研究生: 蔡昀軒
Tsai, Yun-Hsuan
論文名稱: 以循環經濟去毒化砷化鎵廢切削油
Detoxifying Gallium Arsenide Containing Waste Cutting Oil Guided by Circular Economy
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
陳貴通
Tan, Kui-Thong
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 砷化鎵濕式冶煉切削油液液萃取碳量子點
外文關鍵詞: Gallium Arsenide, hydrometallurgy, cutting oil, liquid-liquid extraction, carbon quantum dot
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為三部分討論,透過循環經濟為導向去毒化含砷化鎵切削油。第一部分透過田口方法針對濕式冶煉的四個因素,溫度、硝酸濃度、硫酸濃度、硝酸及硫酸比例進行探討,確認提升冶煉效率的關鍵影響因子。結果顯示硝酸濃度影響最大,硫酸濃度次之,溫度的影響位居第三,硝酸及硫酸比例影響最小。為考慮製程安全及降低冶煉試劑及能源使用,溫度降低至45 °C且切削油及冶煉試劑比例為5:2時,15分鐘內即可使切削油中砷濃度降至1 ppm以下。
      第二部分使用貴金屬萃取劑二(2-乙基己基)磷酸酯(D2EHPA),並以去毒化切削油做為稀釋劑萃取冶煉後酸劑中的鎵。結果顯示萃取劑濃度0.5 M、萃取環境在pH 2.0,萃取試劑體積為冶煉試劑的兩倍時有鎵有最佳萃取效率,並以萃取劑3倍體積的4 N HCl反萃取,總萃取率可達91.1 %。再以硫化鈉做為砷的選擇性沉澱試劑,在砷硫比1:1.8時反應1.5小時,可生成三硫化砷沉澱並回收,且砷含量降至1 ppm以下。
      第三部分使用去毒化後切削油加入乙二胺四乙酸(EDTA),在濃硫酸環境下以120 °C強酸氧化法裂解15分鐘,可獲得氮、硫共摻雜碳量子點。實驗顯示,此碳量子點材料以330 nm紫外光照射時,具有最強的放光強度,其量子產率為2.3 %,並且在pH 2.0-11.0皆有相當好的穩定性。此碳量子點材料對於Fe3+具有相當好的專一性淬滅現象及良好的線性關係(R2:0.9973),可應用於環境水質檢測,並具有相當良好的回收率(井水Fe3+ 回收率:105.8 %,自來水Fe3+ 回收率:102.4 %)。


     This study is divided into three parts. Through the circular economy as a guide to detoxifying GaAs-containing cutting oils. First, affecting factors of hydrometallurgy, such as temperature, the concentration of nitric acid, the concentration of sulfuric acid, and the volume ratio of nitric acid and sulfuric acid were studied by Taguchi method. The results showed the concentration of nitric acid had the greatest impact, the concentration of sulfuric acid was the second, the temperature was the third, and the ratio of nitric acid and sulfuric acid had the smallest impact. Considering process safety and reducing the use of reagents and energy, when the temperature was reduced to 45 °C and the volume ratio of cutting oil and reagents was 5:2 the arsenic concentration in the cutting oil could be reduced to less than 1 ppm in 15 minutes.
      Then, the extractant D2EHPA was selected and the detoxified cutting oil was used as a diluent to extract gallium from the waste reagent. The results showed that the extractant concentration was 0.5 M at pH 2.0, and the volume of the extractant was twice of the waste reagent. The 4 N HCl re-extraction with 3 times the volume of the extractant showed that the total extraction efficiency was 91.1 %. Na2S was used as arsenic-selective precipitation reagent. It could completely recycle arsenic and reduce the arsenic concentration to less than 1 ppm when the molar ratio of arsenic and sulfur is 1:1.8.
      Finally, N, S co-doped CQDs could be synthesized by pyrolyzing the detoxified cutting oil with EDTA and concentrated sulfuric acid at 120℃ for 15 minutes. Experiments showed that the strongest emission intensity of N, S co-doped CQDs was irradiated with ultraviolet light of 330 nm. The quantum yield of N, S co-doped CQDs was 2.3%. It showed the Fe3+-sensitive behavior and the PL intensity has a good linear relationship, and it had the fine stability at pH 2.0-11.0. It could be applied to environmental water quality testing and the had good recovery. (Fe3+ recovery in well water: 105.8 %, Fe3+ recovery tap water: 102.4 %)

    目錄 I 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 鐵 (Iron) 3 1.4 砷 (Arsenic) 3 1.5 鎵 (Gallium) 4 1.6 砷化鎵 (Gallium Arsenide) 5 1.7 切削油 (Cutting oil) 6 1.8 冶金學 (Metallurgy) 8 第二章 文獻回顧 9 2.1 砷化鎵廢料回收 9 2.2 液-液萃取 (Liquid-Liquid extraction) 10 2.3 田口法 (Taguchi method) 12 2.3.1 概論 12 2.3.2 直交表 (Orthogonal Array) 12 2.3.3 訊雜比 (Signal to Noise Ratio) 13 2.3.4 應用 14 2.4 碳量子點 (Carbon quantum dots) 14 2.4.1 簡介 14 2.4.2 合成 15 2.4.3 應用 19 2.4.4 螢光性質及淬滅機制 23 第三章 實驗方法及器材 28 3.1 實驗架構 28 3.2 實驗設備及藥品 30 3.2.1 實驗設備 30 3.2.2 實驗藥品 31 3.3 實驗設備原理 33 3.3.1 微波輔助消化 33 3.3.2 微波電漿原子發射光譜儀 34 3.3.3 紫外光-可見光光譜法 38 3.3.4 螢光光譜儀 39 3.4 實驗方法 40 3.4.1 去毒化含砷化鎵切削油(濕式冶煉法) 40 3.4.2 切削油砷含量分析 43 3.4.3 回收冶煉廢水中砷及鎵 44 3.4.5 碳量子點製備及純化 45 3.4.6 碳量子點分析Fe3+ 46 第四章 結果與討論 48 4.1 濕式冶煉法 48 4.1.1 冶煉系統選擇 48 4.1.2 田口法優化冶煉條件 49 4.1.3 溫度及試劑比例探討 52 4.1.4 製程放大及第三方檢驗 54 4.2 冶煉廢水中砷及鎵的回收 56 4.2.1 萃取劑濃度之影響 56 4.2.2 萃取劑及廢水比例之影響 57 4.2.3 萃取pH環境之影響 57 4.2.4 反萃取試劑濃度之影響 59 4.2.5 反萃取試劑與萃取劑比例之影響 60 4.2.6 砷沉澱試劑濃度之影響 61 4.3 切削廢油製備氮、硫共摻雜碳量子點及應用 62 4.3.1 碳量子點純化技術 62 4.3.2 氮、硫共摻雜碳量子點光譜性質 63 4.3.3 氮、硫共摻雜碳量子點性質 65 4.3.4 氮、硫共摻雜碳量子點應用 79 第五章 結論與展望 86 第六章 參考文獻 88

    1. Papanikolaou, G.; Pantopoulos, K., Toxicology and Applied Pharmacology 2005, 202 (2), 199-211.
    2. Takeno, N., Geological Survey of Japan Open File Report 2005, 419, 102.
    3. Ivanoff, C. S.; Ivanoff, A. E.; Hottel, T. L., Food and Chemical Toxicology 2012, 50 (2), 212-215.
    4. 馮端(1998)。固體物理學大辭典。建宏書局有限公司。
    5. 劉智生、洪儒生(2009)。太陽能電池的高效率化。科學發展,439,60-65。
    6. Webb, D.; Sipes, I.; Carter, D., Toxicology and Applied Pharmacology 1984, 76 (1), 96-104.
    7. 鄧國棟、鄭寶山、翟城、王建平(2007),環境科學,28(5), 1147-1152。
    8. 宋國榮,太陽電池產業晶柱切割製程廢切削液回收研究。國立中央大學環境工程研究所學位論文,2011。
    9. Newman, D. K. (2010). Boule shaping of single crystal silicon carbide by wire electrical discharge machining. Salt Lake City: The University of Utah.
    10. 張其昀(1981)。中華百科全書 。中國文化大學出版社。
    11. Abbaschian, R., & Reed-Hill, R. E. (2008). Physical metallurgy principles. Boston: Cengage Learning.
    12. Gupta, C. K. (2006). Chemical metallurgy: principles and practice. New Jersey: John Wiley & Sons.
    13. Lee, H. S.; Nam, C. W., Hydrometallurgy 1998, 49 (1-2), 125-133.
    14. Hu, S. H.; Xie, M. Y.; Hsieh, Y. M.; Liou, Y. S.; Chen, W. S., Environmental Progress & Sustainable Energy 2015, 34 (2), 471-475.
    15. Sturgill, J.; Swartzbaugh, J.; Randall, P., Clean Products and Processes 2000, 2 (1), 18-27.
    16. Kayasth, S.; Raje, N.; Asari, T.; Parthasarathy, R., Analytica Chimica Acta 1998, 370 (1), 91-103.
    17. Chen, W. T.; Tsai, L. C.; Tsai, F. C.; Shu, C. M., CLEAN–Soil, Air, Water 2012, 40 (5), 531-537.
    18. Zhan, L.; Xia, F.; Xia, Y.; Xie, B., ACS Sustainable Chemistry & Engineering 2017, 6 (1), 1336-1342.
    19. Zhan, L.; Li, J.; Xie, B.; Xu, Z., ACS Sustainable Chemistry & Engineering 2017, 5 (4), 3179-3185.
    20. Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I., Industrial & Engineering Chemistry Research 2002, 41 (17), 4362-4375.
    21. Salgado, A. L.; Veloso, A. M.; Pereira, D. D.; Gontijo, G. S.; Salum, A.; Mansur, M. B., Journal of Power Sources 2003, 115 (2), 367-373.
    22. Darvishi, D.; Haghshenas, D.; Alamdari, E. K.; Sadrnezhaad, S.; Halali, M., Hydrometallurgy 2005, 77 (3-4), 227-238.
    23. Luo, F.; Li, D.; Wei, P., Hydrometallurgy 2004, 73 (1-2), 31-40.
    24. Wasewar, K. L.; Heesink, A. B. M.; Versteeg, G. F.; Pangarkar, V. G., Journal of Biotechnology 2002, 97 (1), 59-68.
    25. Liu, X.; Byrne, R. H., Journal of Solution Chemistry 1998, 27 (9), 803-815.
    26. Sato, T.; Watanabe, H.; Suzuki, H., Hydrometallurgy 1990, 23 (2-3), 297-308.
    27. Watarai, H.; Satoh, K., Langmuir 1994, 10 (10), 3913-3915.
    28. Aminian, H.; Bazin, C., Minerals Engineering 2000, 13 (6), 667-672.
    29. Mahamuni, S. V.; Wadgaonkar, P. P.; Anuse, M. A., Journal of the Serbian Chemical Society 2010, 75 (8), 1099-1113.
    30. Akbari, S.; Mahmood, S. M.; Tan, I. M.; Bharadwaj, A. M.; Hematpour, H., Journal of Petroleum Exploration and Production Technology 2017, 7 (1), 87-101.
    31. Do Kim, K.; Choi, D. W.; Choa, Y.-H.; Kim, H. T., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 311 (1-3), 170-173.
    32. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Nature Communications 2014, 5, 5784.
    33. Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V. V., Energy Conversion and Management 2017, 134, 373-381.
    34. Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J., Advanced Materials 2017, 29 (5).
    35. Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z. a.; Fan, L.; Yang, S., Advanced Materials 2017, 29 (3).
    36. Derfus, A. M.; Chan, W. C.; Bhatia, S. N., Nano Letters 2004, 4 (1), 11-18.
    37. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Journal of the American Chemical Society 2004, 126 (40), 12736-12737.
    38. Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z., Journal of the American Chemical Society 2007, 129 (4), 744-745.
    39. Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N., Chemical Communications 2010, 47 (3), 932-934.
    40. Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D.-W., Chemical Communications 2008, (41), 5116-5118.
    41. Qiao, Z.-A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q., Chemical Communications 2010, 46 (46), 8812-8814.
    42. Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N., Chemical Communications 2010, 47 (3), 932-934.
    43. Xu, J.; Lai, T.; Feng, Z.; Weng, X.; Huang, C., Luminescence 2015, 30 (4), 420-424.
    44. Choi, Y.; Thongsai, N.; Chae, A.; Jo, S.; Kang, E. B.; Paoprasert, P.; Park, S. Y.; In, I., Journal of Industrial and Engineering Chemistry 2017, 47, 329-335.
    45. Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S.-T.; Kang, Z., Carbon 2011, 49 (2), 605-609.
    46. Peng, H.; Travas-Sejdic, J., Chemistry of Materials 2009, 21 (23), 5563-5565.
    47. Zhou, M.; Zhou, Z.; Gong, A.; Zhang, Y.; Li, Q., Talanta 2015, 143, 107-113.
    48. Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z., New Journal of Chemistry 2012, 36 (4), 861-864.
    49. Wang, Y.; Hu, A., Journal of Materials Chemistry C 2014, 2 (34), 6921-6939.
    50. Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R., Scientific Reports 2013, 3, 1473.
    51. Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y., Biosensors and Bioelectronics 2017, 94, 292-297.
    52. Yu, J.; Song, N.; Zhang, Y.-K.; Zhong, S.-X.; Wang, A.-J.; Chen, J., Sensors and Actuators B: Chemical 2015, 214, 29-35.
    53. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T., Angewandte Chemie International Edition 2010, 49 (26), 4430-4434.
    54. Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z., Journal of Materials Chemistry 2012, 22 (21), 10501-10506.
    55. Zhang, M.; Wang, W.; Zhou, N.; Yuan, P.; Su, Y.; Shao, M.; Chi, C.; Pan, F., Carbon 2017, 118, 752-764.
    56. Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P., Nano Research 2017, 10 (9), 3113-3123.
    57. Zhang, F. (Ed.). (2016). Near-infrared Nanomaterials: Preparation, Bioimaging and Therapy Applications.
    58. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Advanced Materials 2010, 22 (6), 734-738.
    59. Zhu, S.; Wang, L.; Li, B.; Song, Y.; Zhao, X.; Zhang, G.; Zhang, S.; Lu, S.; Zhang, J.; Wang, H., Carbon 2014, 77, 462-472.
    60. Kuscu, M.; Akan, O. B., Nano Communication Networks 2014, 5 (1-2), 45-53.
    61. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Nature Protocols 2013, 8 (2), 265.
    62. Hu, S.; Zhao, Q.; Chang, Q.; Yang, J.; Liu, J., RSC Advances 2014, 4 (77), 41069-41075.
    63. Yang, S.; Sun, J.; Li, X.; Zhou, W.; Wang, Z.; He, P.; Ding, G.; Xie, X.; Kang, Z.; Jiang, M., Journal of Materials Chemistry A 2014, 2 (23), 8660-8667.
    64. Ren, Z.; Zhang, W.; Meng, H.; Liu, Y.; Dai, Y., Journal of Chemical & Engineering Data 2007, 52 (2), 438-441.
    65. Aoun, S. B., Royal Society Open Science 2017, 4 (11), 171199.
    66. Hu, Y.; Yang, J.; Tian, J.; Jia, L.; Yu, J.-S., Carbon 2014, 77, 775-782.
    67. Sun, D.; Ban, R.; Zhang, P.-H.; Wu, G.-H.; Zhang, J.-R.; Zhu, J.-J., Carbon 2013, 64, 424-434.
    68. Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S., Chemistry of Materials 2009, 21 (13), 2803-2809.
    69. 洪丞賢,微波電漿原子發射光譜儀於食用油之分析應用。國立清華大學化學系碩士學位論文,2016。

    QR CODE