研究生: |
呂世文 |
---|---|
論文名稱: |
壓電致動器磁滯與潛變之模型建構與參數鑑別 Modeling and Identification of Hysteresis and Creep in Piezoelectric Actuator |
指導教授: | 葉廷仁 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 壓電致動器 、磁滯 、潛變 、麥斯威爾磁滯模型 、柏格潛變模型 |
外文關鍵詞: | piezoelectric actuator, hysteresis, creep, Maxwell hysteresis model, Burgers creep model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電致動器具有位移解析度高、運動響應快、低耗能等特性,時常被用在奈米級的精密定位。但其固有的非線性特性,會使控制系統響應變差,甚至不穩定。因此本文將建構壓電致動器模型,以補償其非線性項的影響。造成壓電致動器有非線性特性的因素有兩個:磁滯效應與潛變效應。本文將利用麥斯威爾磁滯模型與鍵結圖來建構磁滯模型,並利用伯格模型來建構潛變模型。基於磁滯效應與潛變效應耦合的觀念下,將此二模型結合成壓電致動器模型,以能同時補償潛變效應和磁滯效應所引起的非線性特性。
參考文獻
[1] H.Richter, E.A, Misawa, D.A. Lucca, and K. Lu, ”Modeling nonlinear behavior in a piezoelectric actuator,” Precision Eng., 2000.
[2] K. Kuhnen, and H. Janocha, ”Compensation of the creep and hysteresis effects of piezoelectric actuators with inverse systems.”
[3] M. Goldfarb, and N. Celanovic, ”Modeling piezoelectric stack actuators for control of micromanipulation”, IEEE Contr. Syst.
Mag., vol. 17, pp. 69-79,1997.
[4] T.-J. Yeh, Shin-Wen Lu, and Ting-Ying Wu, ”Modeling and
Identification of Hysteresis in Piezoelectric Actuators.” Asme Journal of Dynamic Systems, Measurement and Control, prepared to be publiced.
[5] Lemaitre, J. Chaboche, J.L., ”Mechanics of solid materials," Cambridge University Press, New York Rochelle Melbourne Sydney, 1990.
[6] PI manual, “MicroPositioning, NanoPositioning, NanoAutomation Solutions for Cutting-Edge Technologies.”
[7] Eiichi Fukada, ”History and recent progress in piezoelectric polymers,”IEEE Transactions on Ultrasonics ,Ferroelectrics, and Frequency Control, Vol. 47, no. 6, 2000.
[8] H. Kaizuka and B. Sui, ”A simple way to reduce hysteresis and creep when using piezoelectric actuators,” Japan J. Appl. Phys., Vol. 27, no. 5, pp. 773-776,1988.
[9] N.W. Hagood, W.H. Chung, and A. von Flotow, “Modeling of Piezoelectric Actuator Dynamics for Active Structural Control,” Journal of Intelligent Materials, Systems, and Structures. Vol. 1. pp. 327-354, July 1990.
[10] F. Lee, T.J. Moon, and G.Y. Masada, “Extended Bond Graph Reticulation of Piezoelectric Continua,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 117, no. 1, March, pp. 1-7, 1995.
[11] T.D. Leigh and D.C. Zimmerman, “An Implicit Method for the Nonlinear Modeling and Simulation of Piezoceramic Actuators Displaying Hysteresis,” ASME Smart Structures and Materials, AD-vol. 24, pp. 57-63, 1991.
[12] M. Jouaneh and H. Tian, “Accuracy Enhancement of a Piezoelectric Actuator with Hysteresis,” ASME/JAPAN/USA Symposium on Flexible Automation, vol. 1, pp. 631-637, 1992.
[13] H. Adriaens, W. L. de Koning, and R. Banning, “Modeling Piezoelectric Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, Ddec. 2000.
[14] Jonq-Jer Tzen, Shyr-Long Jeng , and Wei-Hua Chieng, ”Modeling of piezoelectric actuator for compensation and controller design,” Precision Eng. 2003.
[15] K. Kuhnen, and H. Janocha, ”Complex hysteresis modeling of a broad class of hysteretic actuator nonlinearities.”
[16] K. Kuhnen, and H. Janocha, “Real-time compensation of hysteresis and creep in piezoelectric actuators.” Sensors and Actuators 79 (2000) 83–89.
[17] M. Arafa, and A. Baz, ”On the nonlinear behavior of piezoelectric actuators,” Journal of Vibration and control, 10: 387-398, 2004.
[18] Olivier Guillon, Fr˙ed˙eric Thi˙ebaud, Patrick Delobelle, and Dominique Perreux, ”Compressive creep of PZT ceramics: experiments and modelling,” Journal of European Ceramic Society 24,2004.
[19] K. Kuhnen, and H. Janocha,”Adaptive inverse control of piezoelectric actuators with hysteresis operators,”
[20] Hewon Jung, Jong Youp Shim, and DaeGab Gweon, ”New openloop actuating method of piezoelectric actuators for removing hysteresis and creep,” Review of scientific instruments, Vol. 71, no. 9, 2000.
[21] 吳亭穎,「麥斯威爾磁滯模型鑑別之改善策略」,國立清華大
學動力機械工程學系碩士論文,2003。
[22] 周卓明編著,”壓電力學”,全華科技圖書股份有限公司,2003。
[23] 許溢适,”壓電陶瓷新技術,文笙書局,1996。