簡易檢索 / 詳目顯示

研究生: 王振宇
Wang, Jen-Yu
論文名稱: 低暫存器需求的混合電路交換與封包交換之單晶片網路設計
A Circuit-switched and Packet-switched Hybrid Network with Low Buffer Requirement
指導教授: 許雅三
Hsu, Yarsun
口試委員: 邱瀞德
李政崑
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 43
中文關鍵詞: 單晶片網路混合網路電路交換暫存器需求
外文關鍵詞: Network-on-chip, Hybrid network, Circuit-switched, Buffer requirement
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程演進,單晶片網路上結點間的連結線數量也隨之增長,所需要的暫存器數量也同步成長。而單晶片網路上之功耗越來越值得重視,其中暫存器所產生的功耗佔了相當的比例。本論文提出了一個結合電路交換與封包交換的混合型單晶片網路設計,此網路中所需的暫存器數量可大幅減少,且不會隨連結線數量上升而增加。在效能方面,此網路使用了簡單的保留反向路徑方式來建構電路交換網路的路徑,以隱藏建立路徑所需的延遲。
    模擬結果顯示,所提出之混合型網路,與傳統封包交換網路相較,在連結線數量為128位元時,所需之功耗為傳統封包交換網路的56%,面積為52%,且有1.1%的效能增益。當連結線數量增加至256位元時,相對於傳統封包交換網路,所需之功耗為32%,面積為40%,且有1.4%的效能增益。


    As the CMOS technology develops, the number of buffers required in a network-on-chip increases with flit width. This increase of buffers provides more power and area overhead to a network router. This thesis proposes a hybrid packet-switched and circuit-switched network in which the total buffer requirement depends on only the width of the short message and buffer depth, and does not increase with the network width. The performance is maintained through a low latency circuit-switch by using a simple reverse path reservation method.
    The simulation results indicated that, the proposed network costs 56% of power consumption and 52% of area overhead, accompanied by 1.1% of performance improvement compared with the baseline network under the 128-bit network width configuration. And the power consumption and area overhead of proposed network reduce to 32% and 40%, respectively, while exhibiting 1.4% performance improvement compared with the baseline network under the 256-bit network width con-figuration.

    CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 MOTIVATION 2 1.3 OBJECTIVE 3 1.4 ORGANIZATION 3 CHAPTER 2 RELATED WORK 5 CHAPTER 3 HYBRID NETWORK-ON-CHIP 7 3.1 ARCHITECTURE OF PROPOSED HYBRID NETWORK-ON-CHIP 7 3.2 REVERSE PATH RESERVATION FOR THE CIRCUIT-SWITCHED NETWORK 12 3.3 RESERVATION FAILURE WHEN PATHS ARE NOT AVAILABLE 14 3.4 NETWORK TRAFFIC OF A CACHE-COHERENT CMP 19 CHAPTER 4 EVALUATION METHODOLOGY 22 4.1 SIMULATION 22 4.2 NETWORK CONFIGURATION 23 CHAPTER 5 SIMULATION RESULT 26 5.1 POWER 26 5.2 AREA 28 5.3 PERFORMANCE 29 CHAPTER 6 CONCLUSION AND FUTURE WORK 37 6.1 CONCLUSION 37 6.2 FUTURE WORK 38 BIBLIOGRAPHY 40

    [1] W. J. Dally and B. Towles, "Route packets, not wires: on-chip interconnection networks," in Design Automation Conference, 2001. Proceedings, 2001, pp. 684-689.
    [2] S. Chen, C. H. O. Chen, G. Kurian, W. Lan, J. Miller, A. Agarwal, et al., "DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling," in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, 2012, pp. 201-210.
    [3] K. Hyungjun, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jimenez, "Reducing network-on-chip energy consumption through spatial locality speculation," in Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium on, 2011, pp. 233-240.
    [4] S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and G. De Micheli, "CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent Servers," in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, 2012, pp. 67-74.
    [5] M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, and S. Borkar, "A 2.9Tb/s 8W 64-core circuit-switched network-on-chip in 45nm CMOS," in Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European, 2008, pp. 182-185.
    [6] M. A. Anders, H. Kaul, S. K. Hsu, A. Agarwal, S. K. Mathew, F. Sheikh, et al., "A 4.1Tb/s bisection-bandwidth 560Gb/s/W streaming circuit-switched 8×8 mesh network-on-chip in 45nm CMOS," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 110-111.
    [7] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, "A hybrid packet-circuit switched on-chip network based on SDM," presented at the Proceedings of the Conference on Design, Automation and Test in Europe, Nice, France, 2009.
    [8] N. E. Jerger, M. Lipasti, and P. Li-Shiuan, "Circuit-Switched Coherence," Computer Architecture Letters, vol. 6, pp. 5-8, 2007.
    [9] A. Abousamra, A. K. Jones, and R. Melhem, "Proactive circuit allocation in multiplane NoCs," presented at the Proceedings of the 50th Annual Design Automation Conference, Austin, Texas, 2013.
    [10] A. K. Abousamra, R. G. Melhem, and A. K. Jones, "Déjà Vu Switching for Multiplane NoCs," in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, 2012, pp. 11-18.
    [11] A. Hansson, K. Goossens, and A. Rădulescu, "Avoiding Message-Dependent Deadlock in Network-Based Systems on Chip," VLSI Design, vol. 2007, 2007.
    [12] N. D. E. Jerger and L. S. Peh, On-chip Networks: Morgan & Claypool Publishers, 2009.
    [13] S. Yong Ho and T. M. Pinkston, "A progressive approach to handling message-dependent deadlock in parallel computer systems," Parallel and Distributed Systems, IEEE Transactions on, vol. 14, pp. 259-275, 2003.
    [14] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Networks: Elsevier Science, 2004.
    [15] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A Hardware/software Approach: Morgan Kaufmann Publishers, 1999.
    [16] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and J. A. Gregorio, "TOPAZ: An Open-Source Interconnection Network Simulator for Chip Multiprocessors and Supercomputers," in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, 2012, pp. 99-106.
    [17] J. Hestness, B. Grot, and S. W. Keckler, "Netrace: dependency-driven trace-based network-on-chip simulation," in Proceedings of the Third International Workshop on Network on Chip Architectures, 2010, pp. 31-36.
    [18] J. Hestness and S. W. Keckler, "Netrace: Dependency-tracking traces for efficient network-on-chip experimentation," Technical Report TR-10-11, The University of Texas at Austin, Department of Computer Science, 2011.
    [19] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt, "The M5 simulator: Modeling networked systems," IEEE Micro, vol. 26, pp. 52-60, 2006.
    [20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The PARSEC benchmark suite: characterization and architectural implications," presented at the Proceedings of the 17th international conference on Parallel architectures and compilation techniques, Toronto, Ontario, Canada, 2008.
    [21] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, "Aérgia: exploiting packet latency slack in on-chip networks," presented at the Proceedings of the 37th annual international symposium on Computer architecture, Saint-Malo, France, 2010.
    [22] G. Michelogiannakis, N. Jiang, D. Becker, and W. J. Dally, "Packet chaining: efficient single-cycle allocation for on-chip networks," presented at the Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, Porto Alegre, Brazil, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE