簡易檢索 / 詳目顯示

研究生: 張進宣
Chang, Chin-Hsuan
論文名稱: 差分移相量子密鑰分發實驗架構之研析
Toward Demonstration of Differential Phase Shift Quantum Key Distribution
指導教授: 褚志崧
Chuu, Chih-Sung
口試委員: 馮開明
Feng, Kai-Ming
陳彥宏
Chen, Yen-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 44
中文關鍵詞: 量子密鑰分發差分移相
外文關鍵詞: quantum key distribution, differential phase shift
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們用波長1550nm線寬2MHz的古典光雷射做為光源,架設了測試DPS-QKD所需要的非等臂馬赫-曾德爾干涉儀,此架設比起一般的干涉儀多使用了兩面反射鏡將兩臂3m的光程差壓縮在小板子內。我們也測試了這個干涉儀的對比度及其穩定性,並打入一道反向進入干涉儀的雷射光搭配用Labview寫的自動回饋程式鎖住干涉儀的相位,此外為了降低反向進入干涉儀的雷射光對量測訊號產生影響,我們將正反進干涉儀的光源做了空間上的錯位並將鎖干涉儀的反打光強度調至非常的低,然後使用運算放大器搭配鎖相放大器將反打光的訊號放大取出來。
    實驗的部份主要分成三個階段,首先我們先用古典雷射的光源做了一次DPS-QKD的原理測試,接著做了雷射光源的衰減並藉由帕松分佈的測量推算出一次事件在30ns時的平均光子數約0.1顆,最後我們用此衰減雷射光測試了DPS-QKD的原理,並推算出密鑰的產生率約為40kHz,量子位元錯誤率7.99%。


    We use weak 1550nm laser with linewidth 2MHz as our source and construct an asymmetric Mach-Zehnder interferometer to perform differential phase shift quantum key distribution (DPS-QKD). To stabilize the interferometer, we use two mirrors in the long arm to fold the optical path in our Mach-Zehnder interferometer. Moreover, we test the interferometer’s visibility and stability.
    In our experiment, we use attenuated laser to implement DPS-QKD. The laser source is attenuated to about 0.1 photon on average in 30 ns. Finally, we use the attenuated laser to test DPS-QKD, and find the generation key rate to be 40kHz, and QBER 7.99%.

    第一章 實驗動機與研究方法 1 第二章 實驗基本原理介紹 2 2.1 古典密碼學 2 2.2 量子密碼學 3 2.3 BB84量子密鑰分發協定 4 2.4 B92量子密鑰分發協定 9 2.5 差分移相量子密鑰分發 12 2.5.1 差分移相量子密鑰分發簡介 12 2.5.2 差分移相量子密鑰分發實驗 14 2.5.3 差分移相量子密鑰分發的安全性 16 2.6 帕松分佈 18 第三章 實驗架設及測量方法 19 3.1 實驗架設 19 3.2 雷射光源 20 3.3 干涉儀的優化和穩定性的量測 21 3.4 震幅與相位的調製 26 3.5 古典弱光版本的DPS-QKD 29 3.6 帕松分佈的測量 29 3.7 類量子光版本的DPS-QKD 30 第四章 實驗結果與討論 31 4.1 古典弱光版本DPS-QKD量測結果 31 4.2 帕松分佈的量測結果 33 4.3 類量子光版本DPS-QKD量測結果 37 第五章 未來展望 41 參考文獻 43

    [1] 李建興. "圖靈耗費2年心力,但雲端加AI只用15分鐘,就破解了納粹Enigma密碼機" iThome新聞2017-12-04
    [2] Shor, Peter W. "Algorithms for quantum computation: Discrete logarithms and factoring." Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. Ieee, 1994.
    [3] Hughes, Richard J. "Cryptography, quantum computation and trapped ions." PHILOSOPHICAL TRANSACTIONS-ROYAL SOCIETY OF LONDON SERIES A MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (1998): 1853-1868.
    [4] Liu, Chang, et al. "Differential-phase-shift quantum key distribution using heralded narrow-band single photons." Optics express 21.8 (2013): 9505-9513.
    [5] Inoue, K., E. Waks, and Y. Yamamoto. "Differential-phase-shift quantum key distribution using coherent light." Physical Review A 68.2 (2003): 022317.
    [6] James, Ioan. "Claude Elwood Shannon. 30 April 1916—24 February 2001." (2009): rsbm20090015.
    [7] Shannon, Claude E. "Communication theory of secrecy systems." Bell system technical journal 28.4 (1949): 656-715.
    [8] Diffie, Whitfield, and Martin Hellman. "New directions in cryptography." IEEE transactions on Information Theory 22.6 (1976): 644-654.
    [9] Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman. "Cryptographic communications system and method." U.S. Patent No. 4,405,829. 20 Sep. 1983.
    [10] Wootters, William K., and Wojciech H. Zurek. "A single quantum cannot be cloned." Nature 299.5886 (1982): 802-803.
    [11] Bennett, Charles H., and Gilles Brassard. "Quantum cryptography: Public key distribution and coin tossing." Theor. Comput. Sci. 560.P1 (2014): 7-11.
    [12] Fox, Mark. Quantum optics: an introduction. Vol. 15. OUP Oxford, 2006.
    [13] Steane, Andrew M. "Error correcting codes in quantum theory." Physical Review Letters 77.5 (1996): 793.
    [14] Deutsch, David, et al. "Quantum privacy amplification and the security of quantum cryptography over noisy channels." Physical review letters 77.13 (1996): 2818.
    [15] Diamanti, Eleni. Security and implementation of differential phase shift quantum key distribution systems. Stanford University, 2006.
    [16] Shannon, Claude Elwood. "A mathematical theory of communication." ACM SIGMOBILE mobile computing and communications review 5.1 (2001): 3-55.
    [17] Bennett, Charles H. "Quantum cryptography using any two nonorthogonal states." Physical review letters 68.21 (1992): 3121.
    [18] Inoue, Kyo, Edo Waks, and Yoshihisa Yamamoto. "Differential phase shift quantum key distribution." Physical Review Letters 89.3 (2002): 037902.
    [19] Hui, Yan, Zhu Shi-Liang, and Du Sheng-Wang. "Efficient phase-encoding quantum key generation with narrow-band single photons." Chinese Physics Letters 28.7 (2011): 070307.
    [20] Yasuhiro Tokura and Toshimori Honjo. "Differential Phase Shift Quantum
    Key Distribution (DPS-QKD) Experiments." NTT Technical Review
    [21] Honjo, T., K. Inoue, and H. Takahashi. "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer." Optics letters 29.23 (2004): 2797-2799.
    [22] Inoue, Kyo. "Differential phase-shift quantum key distribution systems." IEEE Journal of Selected Topics in Quantum Electronics 21.3 (2015): 109-115.
    [23] Wen, Kai, Kiyoshi Tamaki, and Yoshihisa Yamamoto. "Unconditional security of single-photon differential phase shift quantum key distribution." Physical review letters 103.17 (2009): 170503.
    [24] Honjo, T., T. Inoue, and K. Inoue. "Influence of light source linewidth in differential-phase-shift quantum key distribution systems." Optics Communications 284.24 (2011): 5856-5859.
    [25] Chuu, Chih-Sung, G. Y. Yin, and S. E. Harris. "A miniature ultrabright source of temporally long, narrowband biphotons." Applied Physics Letters 101.5 (2012): 051108.

    QR CODE