簡易檢索 / 詳目顯示

研究生: 郭哲華
論文名稱: Analyzing Band Structures of Semiconductors by The k.p Method
指導教授: 陳柏中
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 38
中文關鍵詞: semiconductor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we discuss about the band structure of semiconductors by
    k•p method. To understand the method and the property of semiconductors,
    we will prove the consequence and introduce another methods in brief.
    An easy situation we simplify the band structure of semiconductors, we
    just use one valence band to represent a clear circumstance. From this we
    could expand to 3-dimentions to approximate real bands of p orbit.
    The Lowdin’s perturbation method and Luttinger operator are also what
    we want to discuss in spin-orbital coupling situation. Then we will compare
    the results from different approximate methods.


    1 Introduction 1 2 Proving The k • p Method 3 2.1 Symmetry of Crystal . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Function from One-Electron Schr¨odinger equation . . . . . . . 4 2.3 Effective Mass of a Nondegenerate Band Using the k • p Method 5 3 Simplifying Band Structures 7 3.1 One Valence Band in Semiconductors . . . . . . . . . . . . . . 7 3.2 Three Valence Bands in Semiconductors . . . . . . . . . . . . 8 4 Realistic Band Strustures 12 4.1 Spin-orbital operator Hso without coupling . . . . . . . . . . . 12 4.2 Spin-orbital coupling J . . . . . . . . . . . . . . . . . . . . . . 14 5 L¨owdin’s Perturbation Method 21 5.1 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 Dispersion the Matrix of J = 3 2 . . . . . . . . . . . . . . . . . 24 6 Kohn-Luttinger Operator 29 6.1 Kohn-Luttinger parameters . . . . . . . . . . . . . . . . . . . 29 6.2 Comparing with Hp . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Conclusion 35

    [1] M. Willatzen, M.Cardona,N.E. Christensen, Relativistic electronic structure
    of 3C-SiC Phys. Rev. B51, 13150, 1995
    [2] M.L. Cohen, J. Chelikowsky: Elctronic Structure and Optical Properties
    of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol. 75
    (Springer,Berlin,Heidelberg), 1989
    [3] E.O. Kane: Band Structure of indium antimonide. J. Phys. Chem. Solids 1,
    249-261, 1957
    [4] M. Cardona, F.H. Pollak: Energy-band structure of germanium and silicon.
    Phys. Rev. 142, 530-543, 1966
    [5] M. Cardona: Band parameters of semiconductors with zincblende, wurtzite,
    and germanium structure. J Phys. Chem. Solids 24, 1543-1555, 1963; erratum:
    ibid. 26, 1351E, 1965
    [6] O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-B¨ornstein, Series III,
    Vol. 17a-h (Semiconductors) (Springer, Berlin, Heidelberg), 1987
    [7] E.O. Kane:The k • p method. Semiconductors and Semimetals 1, 75-100,
    (Academic, New York), 1966
    [8] M. Caroda, N.E. Christensen, G. Fasol: Relativistic band structure and
    Spin-orbit splitting of zincblende-type semiconductors. Phys. Rev. B 38,
    1806-1827, 1988
    [9] G. Dresselhaus, A.F. Kip, C. Kittel:Cyclotron resonance of electrons and
    holes in silicon and germanium crystals. Phys. Rev. 98, 368-384, 195
    [10] M. Willatzen, M. Cardona, N.E. Christensen: LMTO and k •p calculation
    effective masses and band structure of semiconducting diamond. Phys.
    B50, 18054,1994
    [11] J. Serrano, M. Cardona, and T. Ruf, Solid State Commun. 113, 411,
    [12] Luttinger, J. M.:Quantum Theory of Cyclotron Resonance in Semiconductors:
    General Theory:General theory.Phys. Rev. 102,1030-1041, 1956

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE