簡易檢索 / 詳目顯示

研究生: 簡志遠
Chin-Yuan Chien
論文名稱: 三段串接式準相位匹配結構(光參數振盪、二階諧頻與和頻)於週期性反轉鈮酸鋰晶體環型共振腔中產生鈉黃光雷射
Sodium Laser Generation from a PPLN Singly Resonant Ring Resonator Performing Simultaneous OPO, SHG, and SFG
指導教授: 黃衍介
Yen-Chieh Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 38
中文關鍵詞: 週期性反轉鈮酸鋰環型共振腔
外文關鍵詞: PPLN, ring cavity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了產生鈉黃光的波長,我們提出三段串接週期性反轉鈮酸鋰晶體(periodically poled lithium niobate, PPLN)來完成。我們採用一種光參數振盪的方法來達成,同時搭配上環形共振腔的架構來產生589 nm的波長。為了產生1767 nm三階諧頻的訊號,除了原先的光參數振盪器之外,我們又加上了倍頻產生器(second harmonic generation, SHG)與和頻產生器(sum frequency generation, SFG)。而這三段相位匹配的晶體週期分別為30.67 □m、23.93 □m與9.73 □m。晶體的相位匹配溫度在OPO及串接的SHG與SFG分別被被設計在170.55 oC與176.57 oC。在此種的設計之下,我們計算出來在晶體內的雷射腰身約為80 □m。當我們假設單一的共振波長1767 nm與1 %的腔體損耗時,計算出來的閥值約為0.4 W。當我們操作在三倍大的閥值時,其三段串接晶體的轉換效率約為10 %。

    在這論文中,我們驗證了以脈衝式的Q調製雷射來取代連續式的雷射來當幫浦雷射,且同時在環形共振腔中的架構下完成此實驗。此Q調製雷射的脈衝寬度為13 ns,重複率為6 KHz。實驗中的幫浦閥值約為8.35 □J,此整體的589 nm的轉換效率約為0.02 %.


    We present a three-stage PPLN nonlinear optical process for producing sodium D1, D2 wavelengths, 589.6 nm and 589.0 nm. For the purpose of producing the 589-nm wavelength, we adopt 1064-nm pumped bow-tie ring cavity optical parametric oscillation (OPO), oscillating at its signal wavelength, 1767 nm. In order to obtain the third harmonics of the 1767 nm OPO signal, another PPLN crystal, containing a second harmonic generation (SHG) section, a sum frequency generation (SFG) section, and a dispersion compensation section, was installed in the same OPO cavity. The quasi-phase-matching periods of the OPO, SHG, and SFG PPLN sections are 30.67 □m, 23.93 □m, and 9.73 □m, respectively. The phase matching temperatures of the OPO and cascaded SHG and SFG PPLN crystals are 170.55 oC and 176.57 oC. The lengths of the OPO, SHG, and SFG sections are 5 cm, 1 cm, and 1cm, respectively. The total cavity length is 53 cm. Based upon our cavity design, the calculated mode sizes at the OPO PPLN and the cascaded SHG and SFG PPLN crystals are both ~ 80 □m. Theoretical calculation indicates that the continuous-wave oscillation threshold is 0.4 W if the power loss of the 1767-nm wave is 1 %. When the 1064-nm pumping power is 3 times above the oscillation threshold, the overall up-conversion efficiency is ~ 10 % from the 1064-nm power to the 589-nm laser power.

    In this dissertation, instead of continuous-wave operation, we demonstrate pulse operation by pumping the bow-tie ring cavity with a Q-switched Nd:YVO4 laser. The Nd:YVO4 laser produces laser pulses with 13-ns pulsewidth at a 6-kHz repetition rate. The pumping threshold energy is 8.53 □J and the conversion efficiency from 1064-nm to the sodium line was around 0.02 %.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Optical Parametric Process 2 1.3 Quasi-phase-matching Technique 3 1.4 Possible Configurations of a Sodium Laser 5 1.5 Overview of Dissertation 8 Chapter 2 Theory of Cascaded Processes in Periodically Poled Lithium Niobate with Optical Parametric Oscillator 9 2.1. Introduction 9 2.2. Oscillation Threshold for Up-conversion Singly Resonant OPO 9 2.2.1. OPO Cascaded SFG 9 2.2.2. OPO Cascaded with SHG and SFG 11 2.3. Design a Sodium Laser Based on a Cascaded Up-conversion Optical Parametric Oscillator 15 Chapter 3 Experimental Results 17 3.1. Introduction 17 3.2. Pump Source 17 3.3. Nonlinear Crystal 18 3.4. Optical Coating for Cavity Mirrors and PPLN Crystals 19 3.4.1. Optical Coating for Cavity Mirrors 19 3.4.2. Optical Coating for PPLN Crystals 20 3.5. Cavity Simulation 22 3.6. Experimental Results 26 3.7. Analysis and Discussion 32 Chapter 4 Conclusion and Future Research Direction 34 4.1. Conclusion 34 4.2. Future Research Direction 34 Reference 36

    Joseph D. Vance, Chiao-Yao She, and Hans Moosmuller, “ Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant
    sum-frequency mixing in a monolithic lithium niobate resonator, ” APPLIED OPTICS, Vol. 37, No. 21, pp. 4891- 4896 (1998).
    M. P. Jelonek, R. Q. Fugate, W J. Lange, A. C. Slavin, R. E. Ruane, R. A. Cleis, “Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser, ” J. Opt. Soc. Am. A, Vol. 11, No. 2, pp. 806- 812 (1994).
    Yen-Chieh Huang, An-Chung Chiang, Yen-Yin Lin, and Yen-Wen Fang, “Optical Parametric Generation Covering the Sodium D1, D2 Lines From a 532-nm Pumped Periodically Poled Lithium Niobate (PPLN) Crystal With Ionic-Nonlinearity Enhanced Parametric Gain, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 38, No. 12, pp. 1614- 1619 (2002).
    Joshua C. Bienfang, Craig A. Denman, Brent W. Grime, Paul D. Hillman, Gerald T. Moore, and John M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers, ” OPTICS LETTERS, Vol. 28, No. 22, pp. 2219- 2221 (2003).
    P. W. Milonni and L. E. Thode, “Theory of mesospheric sodium fluorescence excited by pulse trains, ” APPLIED OPTICS, Vol. 31, No. 6, pp. 785- 800 (1992).
    Peter W. Milonni, Robert Q. Fugate and John M. Telle, “Analysis of measured photon returns from sodium beacons, ” J. Opt. Soc. Am. A, Vol. 15, No. 1, pp. 217- 233 (1998).
    J. A. Armstrong, et al., Phys. Rev. 127, 1918 (1962)
    Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, ” OPTICS LETTERS, Vol. 22, No. 20, pp. 1553- 1555 (1997).
    E. Cheung, J.G. Ho, H. Injeyan, M.M. Valley, J.G. Berg, R.L. Byer, Y.C. Huang, “A solid Stage Raman Laser for Sodium D2 Line Resonant Excitation,” Proceedings of the 1996 Diode laser Technology Review, Albuquerque, New Mexico, Apr. 1996.
    Craig Denman, presented at the 2003 Advanced Solid-state Photonics. Private communication with R. L. Byer, Stanford University.
    G. C. Papen, Proceedings Adaptive Optics Topical Meeting, Technical University of Munich, Garching, Germany, Oct. 2-6, 1995.
    Y.F. Chen, S.W. Tasi, S.C. Wang, Y.C. Huang, T.C. Lin, and B.C.Wong, Optics Letters, 27 (2002) 1809.
    H. Z. Cheng, P. L. Huang, and S. L Huang, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser, ” Optics Letters, 25 (8), pp. 542- 544, (2000)
    S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-Reentrant Nonplanar Ring Laser Cavity, ” IEEE Journal of Quantum Electronics, 38 (10), pp. 1030- 1308, (2002)
    W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source, ” Opt. Lett. 23 (3), pp. 207-209 (1998)
    M. van Herpen, S. te Lintel Hekkert, S. E. Bisson and F. J. M. Harren, “Wide single-mode tuning of a 3.0–3.8-□m, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” OPTICS LETTERS, Vol. 27, No. 8, pp. 640- 642 (2002).
    A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang and J. T. Shy, “Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate, ” OPTICS LETTERS, Vol. 27, No. 20, pp. 1815- 1817 (2002).
    S.E. Harris “Tunable Optical parametric Oscillators,” Proc. IEEE 57, 2096-2113 (1969).
    W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave, singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, pp. 713-715 (1996)
    W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5 W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, pp. 1336-1338 (1996)
    R. L. Byer, “Parametric Oscillators and Nonlinear Materials”, Nonlinear Optics, Philip G. Harper & Brian S. Wherrett, eds., pp. 49-158, Academic Press, 1975.
    Thomas G. Giallorenzi, and M. H. Teilly, “ Theory of Internal Upconversion and Frequency Doubling in Optical Parametric Oscillators, ” IEEE Journal of Quantum Electronics, QE-8 (3), pp. 302- 310 (1972).
    Bahaa E. A. Saleh, and Malvin Carl Teich, “ Fundamental of Photonics, ” Chapter-19.
    W R. Bosenberg and Dean R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system, ” J. Opt. Soc. Am. B, Vol. 10, No. 9, pp. 1716- 1722 (1993).
    Lefort L., Puech K., Ross G. W., Svirko Y. P., and Hanna D. C. “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption, ” Appl. Phys. Lett., 73(12):1610, September 1998.

    Yung-Fu Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers, ” J. Opt. Soc. Am. B, Vol. 17, No. 11, pp. 1835- 1840 (2000).
    Feng Song, Chaobo Zhang, Xin Ding, Jingjun Xu, Guangyin Zhang, Matthew Leigh, and Nasser Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers, ” APPLIED PHYSICS LETTERS, Vol. 81, No. 12, pp. 2145- 2147 (2002).
    M. M. J. W. van Herpen, S. E. Bisson and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 4–5 mm based on periodically poled LiNbO3, ” OPTICS LETTERS, Vol. 28, No. 24, pp. 2497- 2499 (2003).
    A. C. Chiang, Y. C. Huang, Y. W. Fang, and Y. H. Chen, “Compact, 220-ps visible laser employing single-pass, cascaded frequency conversion in monolithic periodically poled lithium niobate, ” OPTICS LETTERS, Vol. 26, No. 2, pp. 66- 68 (2001).
    An-Chung Chiang, Tsong-Dong Wang, Yen-Yin Lin, Chee-Wai Lau, Yen-Hung Chen, Bi-Cheng Wong, Yen-Chieh Huang, Jow-Tsong Shy, Yu-Pin Lan, Yung-Fu Chen, and Pei-Hsi Tsao, “Pulsed Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled Lithium Niobate Crystals, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 40, No. 6, pp. 791- 799 (2004).
    Stephen J. Brosnan and Robert L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. QE-15, No. 6, pp. 415- 431 (1979).
    Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 28, No. 11, pp. 2631- 2654 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE