研究生: |
林柏全 Lin, Po-Chuan |
---|---|
論文名稱: |
探討岩藻糖轉化酶的催化反應:分子動力學與定點突變模擬分析 Exploring the Reaction of Fucosyltransferases: Insights from Molecular Dynamics and In-silico Mutagenesis |
指導教授: |
楊自雄
Yang, Tzuhsiung |
口試委員: |
游景晴
Yu, Ching-Ching 林俊宏 Lin, Chun-Hung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 分子動力學 、岩藻糖轉化酶 、岩藻糖 、定點突變 、分子對接 |
外文關鍵詞: | Molecular dynamics, Fucose, Fucosyltransferase, Mutagenesis, Molecular docking |
相關次數: | 點閱:36 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
岩藻糖基化是一種重要的糖基化過程,其涉及岩藻糖向寡糖分子的酶促轉移,該反應由岩藻糖基轉移酶催化。本研究主要在研究兩種岩藻糖基轉移酶——FucTa和Bf13FT,它們在人體母乳和其他體液中合成重要的岩藻糖基化寡糖分子中起著關鍵作用。由於缺乏可用的晶體結構,我們採用了AlphaFold2來預測FucTa和Bf13FT的三維結構,並基於這些預測結構進行了分子對接研究,探索了這些酶與各種寡糖分子之間的結合互作,包括了Lacto-N-tetraose (LNT)和Lacto-N-neotetraose (LNnT)以及不同的linker修飾。
為了進一步深入理解,我們對對接複合物進行了分子動力學(MD)模擬,揭示了這些酶-寡糖分子之間的動態模擬和穩定性。透過這些模擬,我們發現了關鍵胺基酸,特別是FucTa中的GLU-95和Bf13FT中的GLU-75,在與特定糖鏈位置(I3和III3/4)形成氫鍵方面起著至關重要的作用。為了增強這些互作,我們進行了電腦模擬突變,生成了一系列旨在改善寡糖分子結合親和力的突變體。我們對這些突變體進行了額外的對接和MD模擬,以評估其穩定性和互作模式。
研究結果顯示,某些突變可以有效增強所需的酶-寡糖分子的關鍵氫鍵,而另一些突變可能會干擾這些關鍵氫鍵。這些關於岩藻糖基化分子機制的研究不僅推進了我們FucTa和Bf13FT對糖基轉移酶功能的理解,還為設計改進的糖基化過程提供了理論框架。
Fucosylation, a key glycosylation process, involves the enzymatic transfer of fucose to glycan substrates, a reaction catalyzed by fucosyltransferases. In this study, we focus on two fucosyltransferases, FucTa and Bf13FT, which are both reported to involve in the synthesis of important fucosylated glycans found in human milk and other biological fluids. Due to the lack of available crystal structures, we employed AlphaFold2 to predict the 3D structures of FucTa and Bf13FT with high accuracy. These predicted structures served as the structures for molecular docking studies, where we investigated the binding interactions between the enzymes and various glycan substrates, including Lacto-N-tetraose (LNT) and Lacto-N-neotetraose (LNnT), along with different linker modifications.
To further refine our understanding, we conducted molecular dynamics (MD) simulations on the docked complexes, revealing the dynamic behavior and stability of these enzyme-glycan interactions. Through these simulations, we identified critical residues, particularly GLU-95 in FucTa and GLU-75 in Bf13FT, that play a crucial role in forming hydrogen bonds with specific glycan positions (I3 and III3/4). To enhance these interactions, we performed in-silico mutagenesis, generating a series of mutants aimed at improving the binding affinity of the glycan substrates. These mutants were subjected to additional docking and MD simulations to assess their stability and interaction patterns.
Our findings demonstrate that certain mutations can enhance the desired enzyme-substrate interactions, while others may disrupt them. These insights into the molecular mechanisms of fucosylation not only advance our understanding of glycosyltransferase function but also provide a framework for designing improved glycosylation processes.
(1) Coutinho, P. M.; Deleury, E.; Davies, G. J.; Henrissat, B. An Evolving Hierarchical Family Classification for Glycosyltransferases. J. Mol. Biol. 2003, 328 (2), 307–317. https://doi.org/10.1016/S0022-2836(03)00307-3.
(2) Sun, H.-Y.; Lin, S.-W.; Ko, T.-P.; Pan, J.-F.; Liu, C.-L.; Lin, C.-N.; Wang, A. H.-J.; Lin, C.-H. Structure and Mechanism of Helicobacter Pylori Fucosyltransferase. J. Biol. Chem. 2007, 282 (13), 9973–9982. https://doi.org/10.1074/jbc.M610285200.
(3) Yu, H.; Li, Y.; Wu, Z.; Li, L.; Zeng, J.; Zhao, C.; Wu, Y.; Tasnima, N.; Wang, J.; Liu, H.; Gadi, M. R.; Guan, W.; Wang, P. G.; Chen, X. H. Pylori Α1–3/4-Fucosyltransferase (Hp3/4FT)-Catalyzed One-Pot Multienzyme (OPME) Synthesis of Lewis Antigens and Human Milk Fucosides. Chem. Commun. 2017, 53 (80), 11012–11015. https://doi.org/10.1039/C7CC05403C.
(4) Huang, H.-H.; Fang, J.-L.; Wang, H.-K.; Sun, C.-Y.; Tsai, T.-W.; Huang, Y.-T.; Kuo, C.-Y.; Wang, Y.-J.; Liao, C.-C.; Yu, C.-C. Substrate Characterization of Bacteroides Fragilis Α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal. 2019, 9 (12), 11794–11800. https://doi.org/10.1021/acscatal.9b04182.
(5) Renwick, S.; Rahimi, K.; Sejane, K.; Bertrand, K.; Chambers, C.; Bode, L. Consistency and Variability of the Human Milk Oligosaccharide Profile in Repeat Pregnancies. Nutrients 2024, 16 (5), 643. https://doi.org/10.3390/nu16050643.
(6) Zhang, Y. Progress and Challenges in Protein Structure Prediction. Curr. Opin. Struct. Biol. 2008, 18 (3), 342–348. https://doi.org/10.1016/j.sbi.2008.02.004.
(7) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
(8) Morris, G. M.; Lim-Wilby, M. Molecular Docking. In Molecular Modeling of Proteins; Kukol, A., Ed.; Walker, J. M., Series Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2008; Vol. 443, pp 365–382. https://doi.org/10.1007/978-1-59745-177-2_19.
(9) Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive Evaluation of Ten Docking Programs on a Diverse Set of Protein–Ligand Complexes: The Prediction Accuracy of Sampling Power and Scoring Power. Phys. Chem. Chem. Phys. 2016, 18 (18), 12964–12975. https://doi.org/10.1039/C6CP01555G.
(10) Terwilliger, T. C.; Klei, H.; Adams, P. D.; Moriarty, N. W.; Cohn, J. D. Automated Ligand Fitting by Core-Fragment Fitting and Extension into Density. Acta Crystallogr. D Biol. Crystallogr. 2006, 62 (8), 915–922. https://doi.org/10.1107/S0907444906017161.
(11) Terwilliger, T. C.; Adams, P. D.; Moriarty, N. W.; Cohn, J. D. Ligand Identification Using Electron-Density Map Correlations. Acta Crystallogr. D Biol. Crystallogr. 2007, 63 (1), 101–107. https://doi.org/10.1107/S0907444906046233.
(12) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47 (7), 1739–1749. https://doi.org/10.1021/jm0306430.
(13) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997, 267 (3), 727–748. https://doi.org/10.1006/jmbi.1996.0897.
(14) Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8 (18), 1555–1572. https://doi.org/10.2174/156802608786786624.
(15) Jain, A. N. Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine. J. Med. Chem. 2003, 46 (4), 499–511. https://doi.org/10.1021/jm020406h.
(16) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256.
(17) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31 (2), 455–461. https://doi.org/10.1002/jcc.21334.
(18) Smith-Vikos, T. Harnessing the Power of Kinase Inhibitors. Genet. Eng. Biotechnol. News 2013, 33 (10), 14, 16–17. https://doi.org/10.1089/gen.33.10.07.
(19) Morley, S. D.; Afshar, M. Validation of an Empirical RNA-Ligand Scoring Function for Fast Flexible Docking Using RiboDock®. J. Comput. Aided Mol. Des. 2004, 18 (3), 189–208. https://doi.org/10.1023/B:JCAM.0000035199.48747.1e.
(20) Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Comput. Biol. 2014, 10 (4), e1003571. https://doi.org/10.1371/journal.pcbi.1003571.
(21) Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/jcc.23905.
(22) Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27 (5), 1208–1209. https://doi.org/10.1063/1.1743957.
(23) Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys. 1992, 97 (3), 1990–2001. https://doi.org/10.1063/1.463137.
(24) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5.
(25) Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159 (1), 98–103. https://doi.org/10.1103/PhysRev.159.98.
(26) Andersen, H. C. Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72 (4), 2384–2393. https://doi.org/10.1063/1.439486.
(27) Parrinello, M.; Rahman, A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980, 45 (14), 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196.
(28) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52 (12), 7182–7190. https://doi.org/10.1063/1.328693.
(29) Hoover, W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31 (3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695.
(30) Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron 2018, 99 (6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011.
(31) Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang, H.; Migues, A. N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; Simmerling, C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16 (1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591.
(32) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. https://doi.org/10.1002/jcc.20035.
(33) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. CHARMM General Force Field: A Force Field for Drug‐like Molecules Compatible with the CHARMM All‐atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31 (4), 671–690. https://doi.org/10.1002/jcc.21367.
(34) Schmid, N.; Eichenberger, A. P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A. E.; Van Gunsteren, W. F. Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40 (7), 843–856. https://doi.org/10.1007/s00249-011-0700-9.
(35) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force‐field Parameter Sets 53A5 and 53A6. J. Comput. Chem. 2004, 25 (13), 1656–1676. https://doi.org/10.1002/jcc.20090.
(36) Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153 (4), 044130. https://doi.org/10.1063/5.0014475.
(37) Páll, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.; Gray, A.; Hess, B.; Lindahl, E. Heterogeneous Parallelization and Acceleration of Molecular Dynamics Simulations in GROMACS. J. Chem. Phys. 2020, 153 (13), 134110. https://doi.org/10.1063/5.0018516.
(38) Salomon‐Ferrer, R.; Case, D. A.; Walker, R. C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol. Sci. 2013, 3 (2), 198–210. https://doi.org/10.1002/wcms.1121.
(39) Tan, Y.; Zhang, Y.; Han, Y.; Liu, H.; Chen, H.; Ma, F.; Withers, S. G.; Feng, Y.; Yang, G. Directed Evolution of an Α1,3-Fucosyltransferase Using a Single-Cell Ultrahigh-Throughput Screening Method. Sci. Adv. 2019, 5 (10), eaaw8451. https://doi.org/10.1126/sciadv.aaw8451.
(40) Edwards, M. E.; Dickson, C. A.; Chengappa, S.; Sidebottom, C.; Gidley, M. J.; Reid, J. S. G. Molecular Characterisation of a Membrane‐bound Galactosyltransferase of Plant Cell Wall Matrix Polysaccharide Biosynthesis. Plant J. 1999, 19 (6), 691–697. https://doi.org/10.1046/j.1365-313x.1999.00566.x.
(41) Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19 (6), 679–682. https://doi.org/10.1038/s41592-022-01488-1.
(42) OUP Accepted Manuscript. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw1000.
(43) Bittrich, S.; Segura, J.; Duarte, J. M.; Burley, S. K.; Rose, Y. RCSB Protein Data Bank: Exploring Protein 3D Similarities via Comprehensive Structural Alignments. Bioinformatics 2024, 40 (6), btae370. https://doi.org/10.1093/bioinformatics/btae370.
(44) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox. J. Cheminformatics 2011, 3 (1), 33. https://doi.org/10.1186/1758-2946-3-33.
(45) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. https://doi.org/10.1002/jcc.20291.
(46) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ 1 and χ 2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8 (9), 3257–3273. https://doi.org/10.1021/ct300400x.
(47) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 014101. https://doi.org/10.1063/1.2408420.
(48) Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. https://doi.org/10.1063/1.448118.
(49) Van Gunsteren, W. F.; Berendsen, H. J. C. A Leap-Frog Algorithm for Stochastic Dynamics. Mol. Simul. 1988, 1 (3), 173–185. https://doi.org/10.1080/08927028808080941.
(50) Gowers, R.; Linke, M.; Barnoud, J.; Reddy, T.; Melo, M.; Seyler, S.; Domański, J.; Dotson, D.; Buchoux, S.; Kenney, I.; Beckstein, O. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations; Austin, Texas, 2016; pp 98–105. https://doi.org/10.25080/Majora-629e541a-00e.
(51) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.