研究生: |
陳勇叡 Chen, Yung-Jui |
---|---|
論文名稱: |
一個2.3μW 10-bit 83KS/s電容分裂連續漸進式類比數位轉換器 A 2.3μW 10-bit 83KS/s SAR ADC with split capacitor array |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 連續逼近式類比數位轉換器 、類比數位轉換器 、低功耗設計 |
外文關鍵詞: | SAR ADC, ADC, Low-power |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生物醫療系統與CMOS製程的進步,兩者的結合將可以對醫療系統與生醫電子系統有大幅度的幫助,例如:隨身的生理監測系統、神經元訊號擷取與分析與仿生電子鼻系統。在生理訊號監測中,EEG(腦波)、ECG(心跳)以及EMG(肌電訊號)是常運用的訊號,搭配電極的縮小,這些都可能整合到手持裝置;在神經元訊號擷取與分析方面,常運用侵入式或非侵入式電極,讀取extracellular signal或intracellular signal的神經訊號紀錄系統;在當今的電子鼻系統,幾乎都是大型裝置沒有小型的電子鼻系統。而為了使這些裝置隨身化,一個低電壓、低功耗的類比數位轉換器是必須的。
本論文針對生物醫療系統設計連續漸進式類比數位轉換器,基於0.18μm CMOS製程並工作於1V。設計上對於取樣與保持電路使用了 Boosted switch增加控制訊號的電壓以降低取樣保持電路中開關MOS在低電壓狀況下的等效電阻,同時減低因低電壓操作時對取樣保持電路線性度的影響;對於DAC使用了省電式Split capacitor array,此種類型的電容陣列,將陣列中最大的MSB電容,分裂成與剩餘電容一樣,可以降低DAC部分功率消耗達37%;在比較器方面利用軌對軌動態比較器,如此以來同時達到低電壓低功率設計與軌對軌輸入電壓範圍。此類比數位轉換器在操作電壓為1V取樣頻率每秒十萬次時有47.81dB的訊號與雜訊比,微分型非線性誤差(DNL)和積分型非線性誤差(INL)分別介於0.53~-0.75LSB與1.53~-1.84LSB間,功率消耗只有4.6μW,並詳細分析了每個步驟的功率消耗數學式。所製作的晶片其面積為480μm x 390μm = 0.187mm2(不包含PAD)。
REFERENCE
[1] J. Pine,“Recording action potentials from cultured neurons with extracellular microcircuit electrodes,”J. Neurosci. Methods, vol. 2, pp. 19-31, 1980.
[2] A.C. Hoogerwerf and K.D. Wise, “A three-dimensional microelectrode array for chronic neural recording,” IEEE Trans. Biomed. Eng., vol. 41, pp. 1136-1146, Dec. 1994.
[3] C.T. Nordhausen, E.M. Maynard, and R.A. Normann, “Single unit recording capabilities of a 100 microelectrode array,” Brain Research, vol. 726, pp. 129-140, 1996.
[4] R.R. Harrison, P.T. Watkins, R.J. Kier, R.O. Lovejoy, D.J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuit, vol. 42, pp. 123-133, January 2007.
[5] Moo Sung Chae et al. “Design Optimization for Integrated Neural Recording Systems,” IEEE J. Solid-State Circuit, vol. 43, pp. 1931 – 1939, 2008.
[6] S. R. Norsworthy, R. Schreier, and G.C. Temes, “Delta-Sigma Data Converters,” IEEE Press. 1997.
[7] D.A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons,New York, 1997.
[8] R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE, 2008.
[9] Keh-La Lin, A. Kemna and B.J. Hosticka, Modualr Low-power, High-speed CMOS Analog-to-Digital Converter for Embedded Systems, Kluwer Academic, 2002.
[10] P.E. Allen and D.R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2002.
[11] Jens Sauerbrey, Doris Schmitt-Landsiedel, and Roland Thewes, “A 0.5-V 1-uW Successive Approximation ADC ” IEEE J. Solid-State Circuit, vol. 38, No. 7, July 2003
[12] Siamak Mortezapour and Edward K. F. Lee, “A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process” IEEE J. Solid-State Circuit, vol. 35, No. 4, April 2000
[13] Simone Gambini, and Jan Rabaey, “Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS” IEEE J. Solid-State Circuit, vol. 42, No. 11, November 2007
[14] Brian P. Ginsburg, and Anantha P. Chandrakasan, ” 500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC” IEEE J. Solid-State Circuit, vol. 42, No. 4, April 2007
[15] You-Kuang Chang, Chao-Shiun Wang and Chorng-Kuang Wang” A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications” IEEE Asian Solid-State Circuits Conference 2007 IEEE.
[16] Michael D. Scott, Bernhard E. Boser, and Kristofer S. J. Pister, “An Ultralow-Energy ADC for Smart Dust” IEEE J. Solid-State Circuit, vol. 38, No. 7, July 2003.
[17] Chi-Sheng Lin and Bin-Da Liu, “A New Successive Approximation Architecture for Low-Power Low-Cost CMOS A/D Converter” IEEE J. Solid-State Circuit, vol. 38, No. 1, January 2003.
[18] Agnes et al, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 246 – 610.
[19] Michiel van Elzaker et al. “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 244 – 610.
[20] Zhiheng Cao et al. “A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13$ mu$m CMOS,” IEEE J. Solid-State Circuit, vol. 44, pp. 862 – 873, March 2009.
[21] C.Hu, “Future CMOS Scaling and Reliability,” Proc, IEEE, vol. 81, No.5, May 1993.
[22] International Technology Roadmap for Semiconductors (ITRS 2007), http://public.itrs.net.
[23] Hao-Chiao Hong, and Guo-Ming Lee “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC” IEEE J. Solid-State Circuit, vol. 42, No. 10, October 2007.
[24] Ginsburg and Chandrakasan. “An Energy-Efficient Charge Recycling Approach for a SAR Converter With Capacitive DAC” Circuit and System, 2005. ISCAS 2005. IEEE International Symposium on (2005) pp. 184 – 187 vol. 1.
[25] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, Jun. 1996.
[26] Gosselin et al. “A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction.” Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE (2007) pp. 49-52.
[27] Sang-Hyun Cho et al. “Design of a 1-Volt and µ-power SARADC for Sensor Network Application.” Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on (2007) pp. 3852 – 3855.
[28] Naveen Verma, and Anantha P. Chandrakasan, “An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes” IEEE J. Solid-State Circuit, vol. 42, No. 6, June 2007.