簡易檢索 / 詳目顯示

研究生: 王安岐
論文名稱: 雙變量平穩時間序列獨立性之無母數檢定
Nonparametric Tests for Independence Between Two Covariance Stationary Time Series
指導教授: 徐南蓉教授
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 經驗交叉相關係數獨立性檢定雙變量平穩時間序列無母數檢定尾端相關穩健性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究議題為提出雙變量時間序列獨立性檢定方法。
    此無母數檢定方法在平穩序列的假設下,
    不須事先以適當模型濾化(filtering),
    也不須決定如何選取適當核函數(kernel function)與其平滑參數(smoothing parameter)
    來調整統計量中的時期參數,
    而直接以兩序列的經驗交叉相關係數(empirical cross correlation function)
    與隨時期遞減的時期權數來建構獨立性檢定統計量。
    同時,此無母數檢定方法非但檢定程序中所需的主觀設定少外,
    其檢定結果也提供有用的訊息以利後續單變量或雙變量模型建模程序。
    文中提出檢定不同時期與同時期的時間相關檢定統計量,
    兩者的虛無漸進分配為可由樣本大小決定權數參數與自由度參數的卡方分配。

    在考慮VARMA模型、具極端值情況雙變量模型、
    與尾端相關(tail dependence)模型的模擬分析下,
    分別比較本文與Haugh's、Hong's及
    Pierre and Roy's等獨立性檢定方法的檢定表現與檢定差異。
    透過模擬比較,
    本文所提的雙變量時間序列檢定方法除了不受極端值出現而改變原有的檢定表現外,
    極端值大小改變時對檢定能力的表現也顯著的優於其他檢定方法,為具穩健性的檢定。
    對於可能存在於尾端相關的時間序列模型中,本文提出的檢定方法也優於文獻上的檢定。


    1 導論 2 文獻回顧與研究動機 2.1 Haugh's檢定 2.2 Koch and Yang's檢定 2.3 Hong's檢定 2.4 Pierre and Roy's檢定 2.5 研究動機 3 檢定方法 3.1 檢定統計量 3.2 WA及WB的漸進分配 3.3 檢定統計量漸進分配之分位數 3.4 統計拔靴崇抽法漸進分配 4 模擬分析 4.1 多變量ARMA(VARMA)模型檢定 4.2 極端值出現下獨立檢定之穩健性 4.3 長記憶性時間序列模型 4.4 尾端相關模型 5 實例探討 5.1 實例探討一 5.2 實例探討二 6 結論

    \renewcommand{\refname}{}
    \begin{thebibliography}{40}
    \bibitem{}Ben, M. G., Martinez, E. J. and Yohai, V. J. (1999), Robust estimatiom in
    vector autogressive moving-average models. {\it J. Time Ser. Anal.} {\bf 20}, 381-399.
    \bibitem{}Blum, J. R., Kiefer, J. and Rosenblatt, M. (1961). Distribution free tests of indenpendence
    based on the sample distru function. {\it Ann. Math. Statist.} {\bf 32}, 485-498.
    \bibitem{}Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994).
    {\it Time Series Analysis. Forecasting and Control.} 3rd edition. Prentice Hall, Englewood Cliffs, NJ.
    \bibitem{}Brockwell, P. J. and Davis, R. A. (1996). {\it Introduction to Time Series and Forecasing.}
    Springer, New York.
    \bibitem{}Bustos, O. H. and Yohai, V. J. (1986). Robust estimates for ARMA models.
    {\it J. Amer. Statist. Assoc.} {\bf 81}, 155-168.
    \bibitem{}Chan, N. H. and Tran, L. T. (1992). Nonparametric tests for serial dependence.
    {\it J. Time Ser. Anal}. {\bf 13}, 102-113.
    \bibitem{}Chitturi, R. V., (1970). Distribution of residual autocorrelations in multiple
    autoregressive schemes. {\it J. Am. Statist. Assoc.} {\bf 69}, 928-934.
    \bibitem{}Coles, S.G. (2001), {\it An Introduction to Statistical Modelling of Extreme Values}.
    Springer Series in Statistical.
    \bibitem{}Coles, S.G. and Tawn, J.A. (1991), Modelling extreme multivariate events.
    {\it Journal of the Royal Statistical Society B,} {\bf 53}, 377-392.
    \bibitem{}Coles, S.G. and Tawn, J.A. (1994), Statistical methods for multivariate extremes:
    An application to structural design (with discussion). {\it Applied Statistics,} {\bf 43}, 1-48.
    \bibitem{}Deheuvels, P. (1981). An asymptotic decomposition for multivariate distribution-free
    tests of indenpendence. {\it J. Mult. Anal.} {\bf 11}, 102-113.
    \bibitem{}Derby, L. and Martin, R. D. (1979). Robust estimation of the first-order autoregression.
    {\it Amer. Statist.} {\bf 42}, 285-287.
    \bibitem{}El Himdi, K. and Roy, R. (1997). Tests for noncorrelation of two multivariate ARMA time series.
    {\it Canad. J. Statist.} {\bf 25}, 233-256.
    \bibitem{}Gewekw, J. (1981). A comparison of tests of indenpendence of two covariance stationary time series.
    {\it J. Am. Sataist. Assoc.} {\bf 76}, 363-373.
    \bibitem{}Goodman, L. A. and Grunfeld, Y. (1961). Some nonparametric tests for comovements between time series.
    {\it J. Am. Statist. Assoc.} {\bf 56}, 11-26.
    \bibitem{}Granger, C. W. J. (1980). Testingfor causality: a personal viewpoint.
    {\it J. Economic Dynamics and Control} {\bf 2}, 329-352.
    \bibitem{}Haan, L. de and Ronde, J. de (1998). Sea and wind:multivariate extremes
    at work. {\it Extremes} {\bf 1}, 7-45.
    \bibitem{}Hallin, M., Jurevckova, J. Picek, J. and Zahaf, T. (1999).
    Nonparametric tests of independence of two autoregressive time series based on autoregression rank scores.
    {\it J. Statist. Plann. Inference} {\bf 75}, 319-352.
    \bibitem{}Haugh, L. D. (1976). Checking the independence of two covariance-stationary
    time series: a univariate residual cross-correlation approach.
    {\it J. Amer. Statist. Assoc.} {\bf 71}, 378-385.
    \bibitem{}Haugh, L. D. and Box, G. E. P. (1977). Identification of dynamic regression(distributed lag)
    models connecting two time series. {\it J. Am. Statist. Assoc.} {\bf 72}, 121-130.
    \bibitem{}Hoeffding, W. (1948). A non-parametric test of indenpendence. {\it Ann. Math. Statist.}
    {\bf 19}, 546-557.
    \bibitem{}Hong, Y. (1996). Testing for indenpendence between two stationary time series.
    {\it Biometrika} {\bf 83}, 615-625.
    \bibitem{}Hong, Y. (1997). One-sided testing for conditional heteroscedasticity in time series models.
    {\it J. Time Ser. Anal.} {\bf 18}, 253-277.
    \bibitem{}Hong, Y. (2000). Generalized spectral tests for serial dependence.
    {\it J. R. Statist. Soc. B} {\bf 62}, 557-574.
    \bibitem{}Hosking, J. (1980). The multivariate portmanteau statistic.
    {\it J. Amer. Statist. Assoc.} {\bf 75}, 602-608.
    \bibitem{}Huber, P. J. (1981). {\it Robust Statistics,} Wiley, New York.
    \bibitem{}Joe, H. (1997), {\it Multivariate Models and Dependence Concepts.}
    Monographs on Statistics and Applied Probability, {\bf 73}, Chapman \& Hall, London.
    \bibitem{}Joe, H. , Smith, R.L. and Weissman, I. (1992), Bivariate threshold methods for extremes.
    {\it Journal of the Royal Statistical Society B,} {\bf 54}, 171-183.
    \bibitem{}Koch, P. D. and Yang, S. S. (1986). A method for testing the indenpence of two time series
    that accounts for a potential pattern in the cross-correlation function. {\it J. Amer. Statist. Assoc.}
    {\bf 81}, 533-544.
    \bibitem{}Ledford, A.W. and Tawn, J.A. (1997), Modelling dependence within joint tail regions.
    {\it Journal of the Royal Statistical Society B}, {\bf 59}, 475-499.
    \bibitem{}Li, W. K. (1988). A goodness-of-fit test in robust time series modelling.
    {\it Biometrika} {\bf 75}, 355-361.
    \bibitem{}Li, W. K. and Hui, Y. V. (1994). Robust residual cross correlation tests for
    lagged relations in time series. {\it J. Statist. Comput. Simulation} {\bf 49}, 103-109.
    \bibitem{}Ljung, G. M. and Box, G. E. P. (1978) On a measure of lack of fit in time series models.
    {\it Biometrika} {\bf 65}, 297-303.
    \bibitem{}McLeod, A. I. (1979). Distribution of the residual cross-crorelation in univariate
    ARMA time series models. {\it J. Amer. Statist. Assoc.} {\bf 74}, 849-855.
    \bibitem{}Patton, A.J. (2001), Modelling time-varying exchange rate dependence using the conditional copula.
    Manuscript, University of California.
    \bibitem{}Pham, D. T., Roy, R. and Cedras, L. (2003). Tests for non-correlation of two cointegrated
    ARMA time series.{\it J. Time Ser. Anal., } in press.
    \bibitem{}Pierce, A. (1977). Lack of dependence among economic variables.
    {\it J. Am. Statist. Assoc.} {\bf 72}, 11-22.
    \bibitem{}Pierce, D. A. and Haugh, L. D. (1979). Causality in temporal systems.
    {\it J. Economic} {\bf 5}, 265-293.
    \bibitem{}Pierre, D. and Roy, R. (2003). Robust tests for independence of two time series.
    {\it Statistica Sinica.} {\bf 13}, 827-852.
    \bibitem{}Priestley, M. B. (1981). {\it Spectral Analysis and Time Series}, {\bf 1, 2}.
    London:Academic Press.
    \bibitem{}Rousseeuw, P. J. and Leroy, A. M. (1987) {\it Robust Regression and Outlier Detection.}
    Wiley, New York.
    \bibitem{}Satterthwaite, F. E. (1941). Synthesis of variance. {\it Psychmetrica}, {\bf 6}. 309-316.
    \bibitem{}Serfling, R. (1980). {\it Approximation Theorems of Mathematical Statistics.}
    New York, Wiley.
    \bibitem{}Shao, J. and Tu, D. (1995). {\it The Jacknife and Bootstrap}.New York, Springer Verlag.
    \bibitem{}Shorack, G. R. and Wellner, J. A. (1986). {\it Empirical Processes with Applications to Statistics.}
    New York, Wiley.
    \bibitem{}Skaug, H. J. and Tjostheim, D. (1993). A nonparametric test of serial independence based
    on the empirical distribution function. {\it Biometrika} {\bf 80}, 591-602.
    \bibitem{}Solomon, Herbert, and Stephens, Michael A. (1977). Distribution of a sum of
    weighted chi-square variables. {\it J. Am. Statist. Assoc.}, {\bf 72}. 881-885.
    \bibitem{}Stute, W. and Schumann, G. (1980). The general Glivenko-Cantelli theorem for stationary
    sequences of random observations. {\it Scand. J. Statist.} {\bf 7}, 102-104.
    \bibitem{}Tsay, R. S. (2001). {\it Analysis of Financial Time Series}.New York, Wiley.
    \bibitem{}Tsay, R. S. and Tiao, G. C. (1995). Asymptotic properties of multivariate nonstationary
    processes with applications to autoregressions. {\it Ann. Statist.} {\bf 18}, 220-250.
    \bibitem{}Wand, M. P. and Jones, M. C. (1995). {\it Kerneel Smoothing}, London, Chapman and Hall.
    \bibitem{}Zhang, J. T. (2005). Approximate and asymptotic distribution of chi-squared-type
    mixtures with applications. {\it J. Am. Statist. Assco.} {\bf 100}, 273-285.
    \bibitem{}Zhang, Z. and Smith, R.L. (2001), Modelling financial time series data as moving maxima processes.
    Manuscript, University of North Carolina.
    \end{thebibliography}

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE