簡易檢索 / 詳目顯示

研究生: 林娉婷
Lin, Ping Ting
論文名稱: 多重服務之工廠選址問題
The Multi-service Facility Location Problem
指導教授: 廖崇碩
Liao, Chung Shou
口試委員: 林春成
林清池
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 27
中文關鍵詞: 工廠選址多重服務近似演算法
外文關鍵詞: facility location, multi-service, approximation algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了著名的工廠選址問題的衍生,稱為多重服務之工廠選址問題。在此問題中,每個工廠能夠提供多種不同的服務,而每個客戶對不同的服務有不同的需求,此問題的目標是找到一個開啟工廠的位置集合,決定其中提供的服務給相對應的客戶,使得所有客戶的需求皆被滿足,並且最小化總成本,包括開啟工廠的成本、提供服務的成本及運輸成本。為了解決此問題,我們修改了區域搜尋啟發式演算法,並且提出了一個近似演算法和理論分析,在本研究中,證明了我們提出的演算法所得到的結果最差不會大於三倍的最佳解,並且將演算法實作,透過實驗結果驗證了我們的演算法的效率和有效性。


    We propose a generalization of the well-known facility location problem, called the multi-service facility location problem. In this problem, each facility has the ability to provide at most p kinds of distinct services, and each client has different requirements from the p kinds of services. The objective is to select a subset of facilities and to identify its corresponding service assignment to clients such that the requirements of each client can be satisfied, and the total cost, including the facility setup cost, service cost and connection cost is minimized. To solve this problem, we modify a local search heuristic algorithm, and present an approximation algorithm with theoretical analysis. In this study, we prove that our algorithm has a locality gap of 3 for this problem. We also implement the algorithm and the experimental result demonstrates its efficiency and effectiveness.

    摘要 Abstract 誌謝 Contents List of Figures and Tables 1. Introduction 2. Preliminaries 2.1. Related Previous Studies 2.2. Local Search Heuristic Algorithm 3. The Multi-service Facility Location Algorithm 3.1. Find an Initial Solution 3.2. Multi-service Local Search Heuristic Algorithm 3.3. The Analysis 4. Experimental Result 4.1 Instances 4.2 Results 5. Conclusions and Future work References

    1. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit.
    Local search heuristics for k-median and facility location problems. SIAM J.
    Comput., (2004), 33(3), pp. 544-562.
    2. J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the
    metric uncapacitated facility location problem. SIAM Journal on Computing,
    (2010), 39(6), pp. 2212-2231.
    3. M. Charikar, and S. Guha. Improved combinatorial algorithms for the facility
    location and k-median problems. In Foundations of Computer Science, 1999.
    40th Annual Symposium on. IEEE, (1999), pp. 378-388.
    4. F. A. Chudak, and D. B. Shmoys. Improved approximation algorithms for
    the uncapacitated facility location problem. SIAM Journal on Computing,
    (2003), 33(1), pp. 1-25.
    5. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. (2015).
    http://www.gurobi.com
    6. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
    Journal of Algorithms, (1999), 31(1), pp. 228-248.
    7. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy
    facility location algorithms analyzed using dual fitting with factor-revealing
    LP. Journal of the ACM (JACM), (2003), 50(6), pp. 795-824.
    8. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility
    location problems. In Proceedings of the thiry-fourth annual ACM symposium
    on Theory of computing. ACM, (2002), pp. 731-740.
    9. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
    and k-median problems using the primal-dual schema and Lagrangian
    relaxation. Journal of the ACM (JACM), (2001), 48(2), pp. 274-296.
    10. Y. A. Kochetov and E. N. Goncharov. Probabilistic tabu search algorithm
    for the multi-stage uncapacitated facility location problem. In Operations
    Research, Proceedings Springer Berlin Heidelberg, (2001), pp. 65-70.
    11. M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search
    heuristic for facility location problems. Journal of algorithms, (2000), 37(1),
    146-188.
    12. S. Li. A 1.488 approximation algorithm for the uncapacitated facility location
    problem. Information and Computation, (2013), 222, pp. 45-58.
    13. M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric
    facility location problems. SIAM Journal on Computing, (2006), 36(2), pp.
    411-432.
    14. J. Plesnik. A heuristic for the p-center problems in graphs. Discrete Applied
    Mathematics, (1987), 17(3), pp. 263-268.
    15. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
    location problems. In Proceedings of the twenty-ninth annual ACM sym-
    posium on Theory of computing. ACM, (1997), pp. 265-274.
    16. M. Sviridenko. An improved approximation algorithm for the metric uncapacitated
    facility location problem. In Integer programming and combinatorial
    optimization. Springer Berlin Heidelberg, (2002), pp. 240-257.
    17. H. I. Yu and C. C. Li. The Multi-Service Center Problem. In Algorithms and
    Computation, Springer Berlin Heidelberg, (2012), pp. 578-587.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE