簡易檢索 / 詳目顯示

研究生: 何政達
Ho, Chen-Ta
論文名稱: 新穎介電泳細胞排列微流體平台之設計、製造與實現以體外重建大尺度仿生之人工肝臟與骨組織
Design, fabrication and implementation of a novel dielectrophoretic cell patterning microfluidic platform for in-vitro construction of large-scale biomimetic engineered liver and bone tissue
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 170
中文關鍵詞: 介電泳細胞排列術微流體組織工程肝臟晶片骨晶片
外文關鍵詞: Dielectrophoresis, Cell patterning, Microfluidics, Tissue engineering, Liver Labchip, Bone Labchip
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有調節細胞外微環境的能力以促進細胞與細胞間、細胞與細胞外基質間交互作用與可溶信號的刺激對維持細胞/組織生理功能是必需的。傳統組織工程技術利用生物可降解支架控制細胞外微環境以促進被培養細胞的貼附、增生、與分化。但由於其無法精確低控制細胞在支架中的空間位置、分佈、與均勻性,因此,組織工程仍主要卓重在研發包含單一種細胞所組成的簡單組織上,如皮膚、軟骨、角膜等;至今對於由數種異質細胞所組成的複雜組織、如肝臟、腎臟與骨頭仍是一大瓶頸與挑戰。由於動物組織是由數種不同細胞型態與其獨特的架構所組成以利執行其特殊生理角色;因此有適當的操控異種細胞排列的能力去建構仿真實組織的複雜圖形以促進細胞與細胞間、細胞與細胞外基質間交互作用,不止對細胞/組織生理功能的維持亦對重建複雜人工組織是關鍵的技術。在如光微影法、微壓印法、微流體、噴墨法、雷射導引直寫、介電泳等眾多細胞排列技術中,介電泳提供在微尺度下可主動、快速、大量平行操控的細胞、微生物、微粒子的能力;是個特別適合於細胞排列應用的技術。在本研究中,我們提出一新穎介電泳細胞排列微流體平台及其設計、製造、與實現;利用這個平台我們發展了三種新穎的介電泳細胞排列電極,可以用來操控大量的細胞以體外重現仿複雜組織之圖形如肝臟、骨組織,且均能達到約85%細胞排列解析度。
    以此技術平台,我們展示1. 近六千個肝與內皮細胞可被快速排列成有單一細胞解析度之放射狀交錯排列的肝/內皮細胞串珠以形成約兩豪米面積之仿肝小葉異質整合的肝組織。2. 近三千個骨母細胞與骨矩陣微粒可被快速被排列成由骨母細胞所組成的數圈同心圓圖形與由氫氧基磷灰石骨矩陣所形成的放射串珠陣列圖形兩者圖形交錯所組成的約兩豪米面積之精密仿骨元組織。3. 大於十萬個肝與內皮細胞可被快速排列成放射狀交錯肝/內皮細胞所排列的肝小葉陣列以實現兩公分等級大小的仿肝小葉之肝組織建構。這些排列後的仿組織圖形在三到五天培養下亦維持緊密的細胞間接觸、高細胞存活率、與良好的排列解析度。本研究技術的延伸可以允許建構其他更複雜的人工組織與提供仿生組織架構以利藥物篩檢與組織生理病理之研究。


    The ability to manipulate the cellular microenvironment to facilitate cell-cell interactions, cell-ECM interactions, and soluble stimuli is essential to maintain cell/tissue physiological functions. Conventional approaches for tissue engineering utilize biodegradable scaffolds to modulate extracellular microenvironment to promote adhesion, proliferation, and differentiation of cultured cells. Due to the inability to precisely control the spatial location, distribution, and uniformity of cells inside the scaffold, tissue engineering focuses primarily on relatively simple tissues comprised of homogeneous cell types such as skin, cartilage, and cornea, but to date it has been challenging to organize heterogeneous cell types to reconstruct complex tissues, such as liver, kidney and bone. Natural animal tissues contain multiple cell types organized in a unique architecture that facilitates specific physiological roles. Therefore, the appropriate organization and manipulation of multiple cell types to mimic the complex pattern of natural tissue to facilitate cell-cell interactions, cell-ECM interactions, and soluble stimuli are essential to maintain cell/tissue physiological functions and also critical to engineer complex tissue engineering for regenerative medicine applications. Comparing to different cell-patterning techniques, including photolithography, microcontact printing, microfluidic patterning, inkjet printing, and laser-guided direct writing, dielectrophoresis (DEP) offers the capability of active, rapid, and massively-parallel manipulation of large numbers of biological cells, microorganisms, and microparticles in microscale, which is a superior candidate for cell patterning application.
    Here, we present the design, microfabrication, and implementation of dielectrophoretic cell patterning microfluidic platform. We develop three novel cell patterning electrodes which are capable of manipulating large numbers of cells/microparticles to in-vitro construct complex tissue-mimetic patterns of liver and bone tissue. Each of the three cell pattering techniques reaches about 85% cell patterning resolution. Using this dielectrophoretic cell patterning platform, we develop three novel cell patterning electrodes we demonstrate that 1.) About six thousands of individual hepatocytes and endothelial cells are rapidly organized into alternate radial and pearl-chain shaped cell strings to form a 2mm2 heterogeneous-integrated lobule-mimetic tissue with single cell-patterning resolution. 2.) About three thousands of individual osteoblasts and bone-matrix microparticles can be rapidly micropatterned into a precise arrangement of multiple osteoblasts-assembled concentric rings interlaced in-between the radial pearl-chain-array of hydroxyapatite-encapsulated microparticles, which form a 2 mm2 heterogeneous-integrated osteon-mimetic tissue. 3.) At least one hundred thousand of hepatocytes and endothelial cells are micropatterned into the array of multiple radial hepatic/endothelial cell strings to from the two-centimeter-scale precise lobule-mimetic liver tissue. The tissue-mimetic patterns after dielectrophoretic cell patterning also maintained intimate-cell-cell contact, high cell viability, and fine cell-patterning resolution after culturing three to five days. Extension of this research will permit the engineering of other complex tissues and investigations of tissue architecture with applications in drug screening and physiology/pathophysiology.

    Table of contents Abstract (English) ….I 摘要 III Acknowledgements IV Abbreviations V Table of contents VI List of figures ….IX List of tables X Chapter 1 Introduction 1.1 Background 1 1.2 Tissue engineering 1 1.3 Cell patterning approaches 3 1.3.1 Passive cell patterning 3 1.3.1.1 Photolithography 4 1.3.1.2 Microcontact printing 4 1.3.1.3 Microfluidic patterning 5 1.3.2 Active cell patterning 6 1.3.2.1 Ink-jet printing 6 1.3.2.2 Laser-guided direct writing 6 1.3.2.3 Cell patterning using dielectrophoresis 7 1.3.2.3.1 Cell patterning using negative dielectrophoresis......7 1.3.2.3.2 Cell patterning using positive dielectrophoresis…...8 1.3.3 Comparison of cell patterning approaches 8 1.4 Theory of dielectrophoresis ….12 1.4.1 Introduction 12 1.4.2 Derivation of dielectrophoretic force on a small dielectric particle 13 1.4.2.1 Polarization of dielectric particle under electric field 14 1.4.3.2 Force on a dipole under a non-uniform electric field 15 1.4.2.3 Derivation of effective dipole moment method 17 1.4.2.3.1 Field due to a finite dipole in a dielectric medium.18 1.4.2.3.2 A dielectric particle in a dielectric medium under 20 1.4.2.3.2 uniform electric field 20 1.4.2.4 Force of a dielectric particle in the medium under AC field 24 1.4.3 Derivation of dielectrophoretic force on a cell 26 1.4.3.1 Clausius-Mossotti factor 27 1.4.4 Summary of DEP 27 1.4.5 Pearl-chain effect 28 1.5 Aim and scope of this thesis ….29 Chapter 2 Development of engineered lobule-mimetic liver tissue 2.1 Abstract 31 2.2 Design, principle and simulation 32 2.2.1 Liver structure 32 2.2.2 Manipulation machanism: field induced dielectrophoresis 32 2.2.3 Design of liver cell patterning microfluidic chip 34 2.2.4 Operation principle of lobule-mimetic liver cell patterning 36 2.2.5 Numerical simulation 36 2.3 Materials and methods 40 2.3.1 Microfabrication processes 40 2.3.2 Cell culture and medium 42 2.3.3 Cell preparation for DEP manipulation 42 2.3.4 Surface modification of the cell-patterning chamber for cell adhesion 42 enhancement 42 2.3.5 Experiemental setup for cell patterning experiments 43 2.3.6 Cell adhesion, grouth and viability assessment in the cell-patterning 43 chamber 43 2.4 Results and discussion 44 2.4.1 The parameter setup for DEP operation 44 2.4.2 On-chip in-parallel cell-patterning demonstration 45 2.4.3 In-situ cell-viability assessment for DEP cell patterning 48 2.4.4 Enhancement of cell adhesion via poly-D-lysine coating and medium 49 replacement 49 2.4.5 Heterogeneous integration of HepG2 cells and HUVECs for liver cell 50 patterning 50 2.5 Conclusions 53 Chapter 3 Development of engineered osteon-mimetic bone tissue 3.1 Abstract 54 3.2 Design, principle and simulation 55 3.2.1 Bone structure 55 3.2.2 Design concept of dielectrophoresis……….. 58 3.2.3 Biochip design for osteon-mimetic bone cell patterning 60 3.2.4 Operation principle of osteon-mimetic bone cell patterning 61 3.2.5 Numerical simulation of field-enhanced dielectrophoresis 62 3.3 Materials and methods 65 3.3.1 Microfabrication processes 65 3.3.2 Cell culture of human fatel osteoblasts (hFOB) 67 3.3.3 Preparation of FITC-hydroxyapatite-PLGA microparticles 67 3.3.4 Cell preparation for DEP manipulation 67 3.3.5 Surface modification for enhancing the cell-to-substrate adhesion 68 and establishing extracellular bone matrix 68 3.3.6 Experimental apparatus for osteon-mimetic bone cell patterning 68 3.3.7 Liquid regulation processes inside the microfluidic chamber 69 3.3.8 Cell viability assay 69 3.3.9 Confocal microscopy setup and 3D image analysis 70 3.4 Results and discussions 71 3.4.1 DEP characterization 71 3.4.2 In-parallel manipulation and on-chip culturing of bone cell pattenring 72 3.4.3 Cell viability assesment in sugar buffer and AC field treatment 75 3.4.4 Characterization of pearl-chain effect via 3D image reconstruction 79 3.4.5 Cell adhesion enhancement via extracellular matrix (ECM) coating 83 and medium regulation 83 3.4.6 Heterogeneous integration of osteoblasts and hydroxyapatite 85 microparticles via the enhanced DEP cell patterning 85 3.5 Conclusions 90 Chapter 4 Development of centimeter-scale construction of lobule-mimetic liver tissue 4.1 Abstract 92 4.2 Design, principle and simulation 94 4.2.1 Design of large-area liver cell patterning microfluidic chip 94 4.2.2 Operation principle of lobule-mimetic liver cell patternin 98 4.3 Materials and methods 100 4.3.1 Microfabrication processes 100 4.3.2 Cell culture 103 4.3.3 Cell preparation for DEP manipulation 103 4.3.4 Surface modification of Type I collagen 104 4.3.5 Experimental apparatus for liver cell patterning 104 4.3.6 Liquid regulation processes inside the microfluidic chamber 105 4.3.7 Cell viability assay 106 4.4 Results and discussions 106 4.4.1 DEP characterization 106 4.4.2 Massively-parallel manipulation and on-chip culturing of liver cell. 118 patterning. 110 4.4.3 In-situ cel viability assessment for DEP cell pattenring. 112 4.4.4 Centimeter scale construction and heterogeneous integration of 114 HepG2 cells and HUVECs via the enhanced DEP cell patterning. 114 4.5 Conclusions 119 Chapter 5 General discussion 5.1 Target and trend 122 5.2 The available force in the microscale 124 5.3 Selection of positive or negative DEP as cell manipulation force 129 5.4 Comparison between simulation and experimental results 130 5.5 Effect of electric field treatment on DEP manipulated cell 136 5.5.1 Heat production form joule heating 136 5.6 Effect of medium on DEP manipulated cell 142 5.6.1 Effect of medum conductivity on DEP force 142 5.6.2 Effect of medum conductivity on cell viability 144 5.7 Uniformity of cell patterning 146 5.8 General rules and key parameters 149 5.9 Towards the 3D cell patterning 151 Chapter 6 Conclusions and future perspectives 6.1 Conclusion 154 6.2 Future perspectives 158 References 161 List of publications and patents …. 168

    Reference

    [1] R. Langer and J. P. Vacanti, Tissue engineering, Science,1993, 260, 920-926.
    [2] United Network for Organ Sharing (UNOS). Available from: URL: http://www.unos.org/frame_Default.asp?Category5 Newsdata
    [3] J.P. Vacanti, R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 1999, 354(Supplement 1), S32-S34.
    [4] J. R. Fuchs, B. A. Nasseri, and J.P. Vacanti, Tissue engineering: A 21st Century Solution to Surgical Reconstruction, Ann. Thorac. Surg. 2001, 72, 577-591
    [5] L.G. Griffith and G. Naughton, Tissue engineering: current challenges and expanding opportunities, Science, 2002, 295, 1009-1014.
    [6] S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater., 2005, 4, 518-524.
    [7] J.L. Drury, and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, 2003, 24, 4337-4351.
    [8] Y. Li, T. Ma, D.A. Kniss, L.C. Lasky and S.T. Yang, Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven matrices, Biotechnol. Prog., 2001, 17, 935-944.
    [9] E. Holy, M.S. Shoichet and J.E. Davies, Engineering three-dimensional bone tissue intro using biodegradable scaffolds: initial cell-seeding density and culture period, J. Biomed. Mater. Res., Part A, 2000, 51(3), 376-382.
    [10] D. Wendt, A. Marsano, M. Heberer and I. Martin, Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity, Biotechnol. Bioeng., 2003, 84(2), 205-214.
    [11] W.T. Godbey, S.B. Hindy, M.E. Sherman and A. Atala, A novel use of centrifugal force for cell seeding into porous scaffold, Biomaterials, 2004, 25(14), 2799-2805.
    [12] K. Shimizu, A. Lto and H. Honda, Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles, J. Biomed. Mater. Res., Part B, 2005, 77, 265-272.
    [13] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu and C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterals, 2003, 24, 4833-4841.
    [14] D. Metcalfe and M.W.J. Ferguson, Bioengineering skin using mechanisms of regeneration and repair, Biomaterals, 2007, 28, 5100-5113.
    [15] C. Chung and J. A. Burdick, Engineering cartilage tissue, Adv. Drug Delivery Rev., 2008, 60, 243-262.
    [16] K. Nishida, M. Yamato, Y. Hayashida, et al, Corneal reconstruction with tissue-engineered cell sheets composed of antologous oral mucosal epithelium, N. Engl. J. Med., 2004, 351, 1187-1196.
    [17] A. Atala and R. Lanza, Methods of Tissue Engineering, Academic Press, San Diego, 2001
    [18] R.P. Lanza, R. langer and J.P. Vacanti, Principle of tissue engineering, Academic press, San Diego, 2000
    [19] R.S. McCuskey, Morphological mechanisms for regulating blood flow through hepatic sinusoids, Liver, 2000, 20, 3-7.
    [20] N. Marieb and J. Mallatt, Human Anatomy, 5th edition, Addison Wesley Longman press, Boston, 2001.
    [21] D.A. Stenger, G.W. Gross, E.W. Keefer and K.M. Shaffer, Detection of physiologically active compounds using cell-based biosensors, Trends in Biotechnol., 2001, 19(8), 304-309.
    [22] K. Bhadriraju and C.S. Chen, Engineering cellular microenvironments to improve cell-based drug testing, Drug Discovery Today, 2002, 7(11), 612-620.
    [23] M. Biondi, F. Ungaro, F. Quaglia and P.A. Netti, Controlled drug delivery in tissue engineering, Adv. Drug Delivery Rev., 2008, 60(2), 229-242.
    [24] D. Falconnet, G. Csucs, H.M. Grandin and M. Textor, Surface engineering appoaches to micropattern surfaces for cell-based assays, Biomaterials, 2006, 27, 3044-3063.
    [25] J. El-Ali, P.K. Sorger and K.F. Jensen, Cells on chips, Nature, 2006, 442(27), 403-411.
    [26] B. Lon, K.E. Healy and P.E. Hockberger, A versatile technique for patterning biomolecules onto glass coverslips, J. Neurosci. Methods. 1993, 50(3), 385-397.
    [27] S.N. Bhatia, M. Yarmush and M. Toner, Controlling cell interactions by micropatterning in co-cultures:hepotocytes and 3T3 fibroblasts, J. Biomed. Mater. Res., 1997, 34, 189-199.
    [28] S.N. Bhatia, M. Yarmusch and M. Toner, Controlling cell interactions by micropatterning in co-cultures:hepotocytes and 3T3 fibroblasts, J. Biomed. Mater. Res., 1997, 34, 189-199.
    [29] S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci. Polymer Ed., 1998, 9, 1137-60
    [30] S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner, Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells, FASEB, 1999, 13, 1883-1900.
    [31] M. Mrksich, L.E. Dike, J. Tein, D.E. Ingber and G.M. Whitesides, Microcontact Printing on Pattern the Attachment on Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver, Exp. Cell. Res., 1997, 235, 305-313.
    [32] R.S. Kane, S. Takayama, E. Ostuni, D. Ingber and G.M. Whitesdes, Patterning proteins and cells using soft lithography, Biomaterials, 1999, 20, 2363-2376.
    [33] G.P. Lopez, M.W. Alberts, S.L. Schreiber, et al., Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold. J. Am. Chem. Soc., 1993; 115, 5877-5578.
    [34] G. P. Lopez, H. A. Biebuyck, R. Härter, A. Kumar and G. M. Whitesides, Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy. J. Am. Chem. Soc., 1993, 115, 10774-10781.
    [35] C. S. Chen, M. Mrksich, S. Huang, G. M. whitesides, and D. E. Ingber, Micropatterned surfaces for control of cell shape, position, and function, Biotechnol. Prog., 1998, 14, 356-363.
    [36] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Geometric control of cell life and death, Science, 1997, 276, 1425-1428.
    [37] A. Kumar and G. M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett., 1993, 63, 2002-2004.
    [38] R. J. Jackman, J. L. Wilbur and G. M. Whitesides, Fabrication of submicron features on curved substrates by microcontact printing, Science, 1995, 269(5244), 664-666.
    [39] E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks, Science, 1997, 276(5313), 779-781.
    [40] A. Folch and M. Toner, Cellular Micropatterns on Biocompatible Materials, Biotechnol. Prog., 1998, 14(3), 388-392.
    [41] A. Folch, A. Ayon, O. Hurtado, M. Schmidt and M. Toner, Molding of deep poly(dimethylsiloxane) microstructures for microfluidics and biological applications, J. Biomech. Eng., 1999, 121, 28-34.
    [42] J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, et al., Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping, Anal. Chem. 2000, 72, 3158-3164.
    [43] D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I. S. Choi, D. E. Ingber, and G.M. Whitesides, Patterned deposition of cells and protein onto surfaces by three-dimensional microfluidic systems, PNAS, 2000, 97(6), 2408-2413.
    [44] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber and G.M. Whitesides, Laminar flow: Subcellular positioning of small molecules, Nature, 2001, 411, 1016.
    [45] E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman and T. Boland, Inkjet printing for high-thoughout cell patterning, Biomaterials, 2004, 25, 3707-3715.
    [46] L. Pardo, W.C. Wilson and T.J. Boland, Characterization of patterned selfassembled monolayers and protein arrays generated by the ink-jet method, Langmuir, 2003, 19, 1462–1466.
    [47] N.E. Sanjana and S.B. Fuller. A fast flexible ink-jet printing method for patterning dissociated neurons in culture, J. Neurosci. Methods, 2004; 136, 151-163.
    [48] F. Turcu, K. Tratsk-Nitz, S. Thanos, W. Schuhmann and P. Hieduschka, Ink-jet printing for micropattern generation of laminin for neuronal adhesion, J. Neurosci. Methods, 2003, 131, 141-148.
    [49] W.C. Wilson and T. Boland, Cell and organ printing 1: protein and cell printers, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2003, 272A, 491-496.
    [50] A. Ashkin, J.M. Dziedzic and T. Yamane, Optical trapping and manipulation of single cells using infrared-laser beams, Nature, 1987, 330, 769-771.
    [51] D.J. Odde and M.J. Renn, Laser-guided direct writing of living cells, Biotechnol. Bioeng., 2000, 67, 312-318.
    [52] Y. Nahmias, R.E. Schwartz, C.M. Verfaillie and D.J. Odde, Laser-guided direct writing for three-dimensional tissue engineering, Biotechnol. Bioeng., 2005, 92(2), 129-136.
    [53] Y. Nahmias and D.J. Odde, Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structure, Nat. Protoc., 2006, 1(5), 2288-2296.
    [54] P.J. Rodrigo, V.R. Daria and J. Gluckstad, Real-time three-dimensional optical micromanipulation of multiple particles and living cells, Opt. Lett., 2004, 29, 2270-2272.
    [55] V.R. Daria, P.J. Rodrigo and J. Gluckstad. Dynamic formation of optically trapped microstructure arrays for biosensor applications, Biosens. Bioelectron., 2004, 19, 1439-1444.
    [56] T. Matsue, N. Matsumoto and I. Uchida, Rapid micropatterning of liver cells by repulsive dielectrophoretic force, Electrochim. Acta., 1997, 42, 3251-3256.
    [57] M. Frenea, S.P. Faure, B.L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Mater. Sci. Eng., C, 2003, 23, 597-603.
    [58] Z. Yu, G. Xiang, L. Pan, L. Huang, Z. Yu, W. Xing and J. Cheng, Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips, Biomed. Microdevices, 2004, 6(4), 311-324.
    [59] N. Mittal, A. Rosenthal and J. Voldman, nDEP microwells for single-cell patterning in physiological medium, Lab chip, 2007, 7, 1146-1153.
    [60] D.S. Gray, J.L. Tan, J. Voldman and C.S. Chen, Dileectrophoretic registration of living cells to a microelectrode array, Biosens. Bioelectron., 2004, 19, 771-780.
    [61] D.R. Albrecht, V.L. Tsang, R.L. Sah and S.N. Bhatia, Photoand electropatterning of hydrogel-encapsulated living cell array, Lab Chip, 2005, 5, 111-118.
    [62] B. Alp, J.S. Andrews, V.P. Mason, I.P. Thompson, R. Wolowacz and G.H. Markx, Building structured biomaterials using AC electrokinetics, IEEE Eng. Med. Biol. Mag., 2003, 22, 6, 91-97.
    [63] C.T. Ho, R.Z. Lin, W.Y. Chang, H.Y. Chang and C.H. Liu, Rapid heterogenerous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap, Lab chip, 2006, 6, 724-734
    [64] H.A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
    [65] H.A. Pohl, The motion of precipitation of suspensoids in divergent electric fields, J. Appl. Phys., 1951, 22, 869-871.
    [66] H.A. Pohl and J.S. Crane, Dielectrophoresis of cells, Biophys. J., 1971, 11, 711-721.
    [67] P.R.C. Gascoyne, X.B. Wang, Y. Huang and F.F. Becker, Dielectrophoresis separation of cancer cells from blood, Trans. Ind. Appl., 1997, 33(3), 670-678.
    [68] H. Morgan, M.P. Hughes, N.G. Green, Separation of subparticles by dielectrophoresis, Biophys. J., 1999, 77, 516-525.
    [69] S. Choi and J.K. Park, Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array, Lab chip, 2005, 5, 1161-1167.
    [70] N.G. Green, H. Morgan and J.J. Milner, Manipulation and trapping of sub-micro bioparticles using dielectrophoresis, J. Biochem. Biophys. Methods, 1997, 35, 89-102.
    [71] T. Muller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle and G. Fuhr, A 3-D microelectrode system for handling and caging single cells and particles, Biosens. Bioelectron., 1999, 14, 247-256.
    [72] P.R.C. Gascoyne and J.V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, P.IEEE, 2004, 92(1), 22-40.
    [73] X.B. Wang, J. Yang, Y. Huang, J. Vykoukal, F.F. Becker and P.R.C. Gascoyne, Cell separarion by dielectrophoretic field-flow fractionation, Anal. Chem., 2000, 72, 832-839.
    [74] X. Wang, X.B. Wang, and P.R.C. Gascoyne, General expressions for dielectropjoresis force and electrorotational torque derived using the Maxwell stress tensor method, J. electrostat., 1997, 39, 277-295.
    [75] T.B. Jones, Electromechaincs of particles, Cambridge university press, Cambridge, New York, 2005.
    [76] T.B. Jones, Basic theory of dielectrophoresis and electrorotation, IEEE Eng. Med. Biol. Mag., 2003, 22(6), 33-42.
    [77] D.J. Griffiths and C. Inglefield, Introduction to electrodynamics, Prentice Hall, New Jersey, 2005.
    [78] I. Turcu and C.M. Lucaciu, Dielectrophoresis: a spherical shell model, J. Phys. A: Math.Gen.,1989, 22, 985-993.
    [79] E. Muth, Kolloid, 1927, 41, 97-102.
    [80] P. Liesbesny, Arch. Phys. Ther., 1939, 19, 736-740.
    [81] A.A. Texeira-Pinto, L.L. Nejelski, J.L. Curtler and J. H. Heller, The behavior of unicellular organisms in an electromagnetic field, Exp. Cell. Res., 1960, 20, 548-564.
    [82] M.P. Hughes, Nanoelectromechanics in Enginnering and Biology, CRC Press, Boca Raton, 2003.
    [83] B. Palsson, J.A. Hubbell, R. Plonsey and J.D. Bronzino, Principle and Applications in Engineering Series Tissue Engineering, CRC Press, Boca Raton, 2003.
    [84] A. Atala and R. Lanza, Methods of Tissue Engineering, Academic Press, San Diego, 2001.
    [85] E.A. Jaffe, R.L. Nachman, C.G. Becker and C.R. Minick, Culture of human endothelial cells derived from umbilical veins, identification by morphologic and immunological criteria, J. Clin. Invest, 1973, 52, 2745-2756.
    [86] R.Z. Lin, L.F. Chou, C.M. Chien and H.Y. Chang, Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and β□-integrin, Cell and Tissue Res., 2006, 324(3), 411-422.
    [87] C.T. Ho, R.Z. Lin, H.Y. Chang and C.H. Liu, Micromachined T-switches for cell sorting applications, Lab chip, 2005, 5, 1248-1258.
    [88] U. Zimmermann, Electromanipulation of Cells, CRC Press, London, 1996.
    [89] U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hämel and V. Sukhorukov, Electromanipulation of mammalian cells: fundamentals and application, IEEE T. Plasma Sci., 2000, 28(1), 72-82.
    [90] Z. Yu, G. Xiang, L. Pan, L. Huang, Z. Yu, W. Xing and J. Cheng, Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips, Biomed. Microdevices, 2004, 6(4), 311-324.
    [91] P.R.C. Gascoyne and J.V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, P. IEEE, 2004, 92(1), 22-40.
    [92] G. Fuhr, R. Hagedorn, R. Glaser, J. Gimsa. and T. Muller, Membrane potentials induced by external rotating electrical fields, Electromagn. Biol. Med., 1987, 6, 49-69.
    [93] K. Bhadriraju and C.S. Chen, Engineering cellular microenvironments to improve cell-based drug testing, Drug Discovery Today, 2002, 7(11), 612-620.
    [94] A.S. Rudolph, Cell and tissue based technologies for environmental detection and medical diagnostics, Biosens. Bioelectro., 2001, 16, 429-431.
    [95] W.M. Saltzman and W.L. Olbricht, Building Drug Delivery into Tissue Engineering, Nat. Rev. Drug Discov., 2002, 1, 177-186.
    [96] D.W. Huntmacher, Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives, J. Biomater. Sci., Polym. Ed., 2001, 12(1), 107-124.
    [97] M.J. Dalby, L.D. Silvio, E.J. Harper and W. Bonfield, Initial interaction of osteoblasts with the surface of hydroxyapatite-poly (methylmethacrylate) cement, Biomaterials, 2001, 22(13), 1739-1747.
    [98] S.S. Kim, M.S. Park, O. Jeon, C.Y. Choi and B.S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 1399-1409.
    [99] A.H. Reddi, Morphogenesis and tissue engineering of bone and cartilage: Inductive singnals, stem cells, and biomimetic biomaterials, Tissue Eng., 2000, 6, 351-359.
    [100] R.B. Martin, Toward a Unifying Theory of Bone Remodeling, Bone, 2000, 26(1), 1-6.
    [101] H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguibnon, K. Oudina, L. Sedel and G. Guillemin, Tissue-engineered bone regeneration, Nat. Biotechnol., 2000, 18, 959-963.
    [102] J.A. Kansis, Diagnosis of osteoporosis and assessment of frature risk, The Lancet, 2002, 359(9321), 1929-1936.
    [103] N. Marieb, J. Mallatt, Human Anatomy, 5th edition, Addison Wesley Longman press, Boston, 2001.
    [104] L.G. Griffith and G. Naughton, Tissue engineering: current challenges and expanding opportunities, Science, 2002, 295, 1009-1014.
    [105] S. J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater., 2005, 4. 518-524.
    [106] Glasser, G. Fuhr, Cultivation of cells under strong ac-electric field-differentiation between heating and trans-membrane potential effect, Bioelectrochem. Bioenerg., 1998, 47(2), 301-310.
    [107] U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hämel and V. Sukhorukov, Electromanipulation of mammalian cells: fundamentals and application, IEEE T. Plasma Sci., 2000, 28(1), 72-82.
    [108] J. B. Pawley, Handbook of Biological Confocal Microscopy, Plenum Press, 1995.
    [109] S.F. El-Amin, H.H. Lu, Y. Khan, J. Burems, J. Mitchel, R.S. Tuan, C.T. Laurencin, Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering, Biomaterials, 2003, 24, 1213-1221.
    [110] M.P. Lutolf and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol., 2005, 23(1), 47-55.
    [111] R.O. Hynes, Integrins: Bidirectional, Allosteric Signaling Machines, Cell, 2002, 110, 673-687.
    [112] M. Mizuno, R. Fujisawa and Y. Kuboki, Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagan-α2β1 Integrin Inteaction, J. Cell Physiol., 2000, 184, 207-213.
    [113] D. Becker, U. Geißler, U. Hempel, S. Bierbaum, D. Scharnweber, H. Worch, K..-W. Wenzel, Proliferation and differentiation of rat calvarial osteobasts on type I collgan-coated titanium alloy, J. Biomed. Mater. Res. A, 2002, 59(3), 516-527.
    [114] W. Jared, M. S. Allen and S.N. Bhatia, Engineering liver therapies for the future, Tissue eng., 2002, 8(5), 725-734
    [115] E. R. Weibel, W. Stäubli, H. R. Gnägi, and F. A. Hess, Correlated morphometric and biochemical studies on the liver cell I. Morphometric model, stereologic methods, and normal morphometric data for rat liver, J. Cell Biol., 1969, 42(1), 68-91.
    [116] A. Blouin, R. P. Bolender, and E. R. Weibel, Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study, J. Cell Biol., 1977, 72, 441-455.
    [117] M, W. Deen, Analysis of transport phenomena. Oxford University Press, New York, 1998.
    [118] .J. Graf and O. H. Petersen., Cell membrane potential and resistance in liver. J. Physiol, 1978, 284, 105-126.
    [119] T. Sawanobori, H. Takanashi, M. Hiraoka, Y. Iida, K. Kamisaka, H. Maezawa., Electrophysiological properties of isolated rat liver cells. Journal of Cellular Physiology, 1989, 139(3), 580-585.
    [120] T. Kntnik and D. Miklavcic, Theroetical evaluation of the distribution power dissipation in biological cells exposed to electric fields, bioelectromagnetics, 2000, 21, 385-394.
    [121] A. Castellanos, A. Ramos, A. Gonz´alez, N. G. Green and H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws, J. Phys. D: Appl. Phys., 2003, 36, 2584-2597.
    [122] S. Lindquist, The heat-shock response. Annu. Rev. Biochem., 1986, 55, 1151-1191.
    [123] J. C. Weaver, T. E. Vaughan, G. T. Martin, Biological effects due to weak electric and magnetic fields: the temperature variation threshold. Biophys. J., 1999, 76, 3026-3030.
    [124] S. W. Carper, J. J. Duffy, W. E. Gerner, Heat-shock proteins in thermotolerance and other cellular processes. Cancer Res., 1987, 47, 5249-5255.
    [125] G. Scheiner-Bobis, The sodium pump: Its molecular properties and mechanics of ion transport, Eur. J. Biochem., 2002, 269, 2424-2433.
    [126] Alberts, B., Molecular Biology of the Cell. Garland Science, New York 2001.
    [127] D.R. Albrecht, G.H. Underhill, T.B. Wassermann, R.L. Sah and S. N. Bhatia, Probing the role of multicellular organization in three-dimensional microenvironments, Nat. Methods, 2006, 3(5), 369-375.
    [128] D.R. Albrecht, G.H. Underhill, A. Mendelson, S.N. Bhatia, Multiphase electropatterning of cells and biomaterials, Labchip,2007, 7, 702-709.
    [129] V. L. Tsang and S. N. Bhatia, Three-dimensional tissue fabrication, Adv. Drug Delivery Rev., 2004, 56, 1635-1647.
    [130] S. Hybbinette, M. Bostrom, K. Lindberg, Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cell propagation. Exp Dermatol, 1999; 8, 30-38.
    [131] M. Peakman, G. L.McNab, N. D. Heaton, K. C. Tan, D. Vergani. Development of techniques for obtaining monodispersed human islet cells. Transplantation, 1994; 57, 384-393.
    [132] K. Jung, G. Hampel, M. Scholz, W. Henke, Culture of human kidney proximal tubular cells—the effect of various detachment procedures on viability and degree of cell detachment, Cell. Physiol. Biochem., 1995, 5, 353-360.
    [133] T. Takezawa, Y. Mori, K. Yoshizato, Cell culture on a thermo-responsive polymer surface.Bio/Technology, 1990; 8(9), 854-856.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE