研究生: |
李佳儒 Li, Chia-Ju |
---|---|
論文名稱: |
東南亞中央銀行情緒網絡分析 The Sentiment Network Analysis of Southeast Asia Central Banks |
指導教授: |
黃裕烈
HUANG, YU-LIEH |
口試委員: |
徐之強
徐士勛 |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 22 |
中文關鍵詞: | 東南亞 、中央銀行 、情緒網絡 、情緒指標 |
外文關鍵詞: | Southeast Asia, central bank, Social Network, Sentiment |
相關次數: | 點閱:89 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用最小生成樹 (minimum spanning tree) 和三角最大過濾圖 (triangulated maximally filtered graph) 方法,觀察在2005年底至2024年初,東南亞中央銀行 (菲律賓、新加坡、印尼、馬來西亞和泰國) 與9個國家中央銀行情緒指標的相關性。本文利用中央銀行的貨幣政策聲明或決策建構情緒指標,實證結果顯示在東南亞五國情緒指標網絡內,馬來西亞最可能為情緒指標中心,然而東南亞央行情緒指標網絡隨者國家數目地增加,馬來西亞的重要性下降,顯示馬來西亞的影響為地區性。此外,我們觀察到菲律賓、馬來西亞和泰國的情緒指標與歐洲央行較相近;印尼的情緒指標則與美國央行較相近;新加坡與歐洲央行和美國央行皆相關。東南亞情緒指標除了與歐美相關,我們也觀察到東南亞央行情緒指標與亞太區域相關 (如:印度、澳洲與韓國)。
I explore Southeast Asia central banks sentiment connection between December, 2005 and March, 2024. I choose 5 Southeast Asia (Indonesia, Malaysia, Philippines, Thailand and Singapore) and 9 central banks and construct sentiment indexes. I use minimum spanning tree and triangulated maximally filtered graph method to construct Southeast Asia central banks network. I find Malaysia is the most likely to be the sentiment center in 5 Southeast Asia central banks sentiment network. When adding other countries in sentiment network, Malaysia’s sentiment correlations with the other Southeast Asian countries become weaker, which implies Malaysia effect is regional. Besides I find Malaysia, Philippines and Thailand sentiment indexes are more correlated with European Central bank, Indonesia sentiment index is more correlated with Fed and Singapore is correlated with European Central bank and Fed. Southeast Asia sentiment indexes have the correlation with European Central Bank, Fed and Asia-Pacific countries (ex. India, Australia and Korea).
1.黃裕烈與李佳儒 (2024) ,「美歐與東南亞國家央行政策溝通工具的影響效應」,Working Paper.
2.Apel, M., & Grimaldi, M. (2012). “The information content of central bank minutes” Working Paper.
3.Baranowski, P., Bennani, H., & Doryń, W. (2021), “Do the ECB's introductory statements help predict monetary policy? Evidence from a tone analysis,” European Journal of Political Economy, 66, 101964.
4.Basnet, H. C., Sharma, S. C., & Vatsa, P. (2015), “Monetary policy synchronization in the ASEAN-5 region: an exchange rate perspective,” Applied Economics, 47(1), 100-112.
5.Belke, A., Dubova, I., & Volz, U. (2018), “Bond yield spillovers from major advanced economies to emerging Asia,” Pacific Economic Review, 23(1), 109-126.
6.Brusa, F., Savor, P., & Wilson, M. (2020), “One central bank to rule them all,” Review of Finance, 24(2), 263-304.
7.Dau, T. M. L., & Sethapramote, Y. (2019), “Measuring fiscal and monetary policies spillovers in ASEAN,” DLSU Business & Economics Review, 28(2), 2019.
8.Eichengreen, B. (2013), “Currency war or international policy coordination?” Journal of Policy Modeling, 35(3), 425-433.
9.Eklund, J., & Kim, J. M. (2024), “Forecasting Consumer Price Index with Federal Open Market Committee Sentiment Index,” Journal of Forecasting.
10.Hoek, J., Kamin, S., & Yoldas, E. (2022), “Are higher US interest rates always bad news for emerging markets?” Journal of International Economics, 137, 103585.
11.Hofmann, B., & Takáts, E. (2015), “International monetary spillovers,” BIS Quarterly Review (September 2015), 105–118.
12.Huang, Yu-Lieh, & Kuan, Chung-Ming (2021), “Economic prediction with the FOMC minutes: An application of text mining,” International Review of Economics & Finance, 71, 751-761.
13.Inoue, T., & Okimoto, T. (2022), “International spillover effects of unconventional monetary policies of major central banks,” International Review of Financial Analysis, 79, 101968.
14.Kearns, J., Schrimpf, A., & Xia, F. D. (2023), “Explaining monetary spillovers: The matrix reloaded,” Journal of Money, Credit and Banking, 55(6), 1535-1568.
15.Lee, G. S., & Djauhari, M. A. (2012), “An overall centrality measure: The case of US stock market,” International Journal of Basic & Applied Sciences, 12(6), 99-103.
16.Malmendier, U., Nagel, S., & Yan, Z. (2021), “The making of hawks and doves,” Journal of Monetary Economics, 117, 19-42.
17.Mantegna, R. N. (1999), “Hierarchical structure in financial markets,” The European Physical Journal B-Condensed Matter and Complex Systems, 11, 193-197.
18. Massara, G. P., Di Matteo, T., & Aste, T. (2016), “Network filtering for big data: Triangulated maximally filtered graph,” Journal of Complex Networks, 5(2), 161-178.
19. McKinnon, K., & Martin, V. L. (2022), “Measuring Global Interest Rate Comovements with Implications for Monetary Policy Interdependence,” Working Paper.
20. Von Ferber, C., Holovatch, T., Holovatch, Y., & Palchykov, V. (2009), “Public transport networks: empirical analysis and modeling,” The European Physical Journal B, 68, 261-275.
21. Yustiawan, Y., Maharani, W., & Gozali, A. A. (2015), “Degree centrality for social network with opsahl method,” Procedia Computer Science, 59, 419-426.