簡易檢索 / 詳目顯示

研究生: 張博鈞
Zhang, Bo-Jyun
論文名稱: 微流體晶片結合介電泳技術應用於腎臟免疫反應分析之研究
A Microfluidic Chip Integrated Dielectrophoresis Patterning for the Analysis of Kidney Immune Response
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 張晃猷
Chang, Hwan-You
盧向成
Lu, Shiang-Cheng
周莉芳
Chou, Li-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 微流體晶片免疫分析大腸桿菌脂多醣介電泳
外文關鍵詞: Microfluidic, Immune Response, Escherichia coli (E. coli), Dielecrophoresis(DEP)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   上泌尿道感染常會引發腎臟急性發炎症狀,嚴重時會導致器官衰竭甚至是死亡,所以此種疾病相關產生之細胞免疫反應是個不容忽視的課題。在先前關於腎臟的微流體晶片研究中,大多數團隊著重於研究慢性腎臟疾病與離子交換等功能。在此研究中,我們利用微機電技術製作一個微流體晶片,用以模擬腎臟在受到細菌入侵時引發的免疫反應,觀察腎臟細胞分泌出的激素對免疫細胞之影響。此晶片利用矮結構控制流場藉以隔離兩種細胞,同時整合了介電泳細胞排列技術(DEP)來定義腎臟細胞之排列圖案。
      本研究使用來自大腸桿菌(E. coli)的脂多醣(LPS)來刺激腎小管上皮細胞(HK-2),而HK-2在接受到刺激後,會開始分泌細胞激素去影響人類單核球細胞(THP-1),之後即可觀察THP-1是否會因為接收到HK-2細胞激素而分化成巨噬細胞。
      實驗結果顯示HK-2細胞在經由DEP排列後仍有大於99%之存活率,且在培養48小時後確認DEP並不會影響後續生長之細胞型態。在加入10ng/ml E. coli LPS刺激後,HK-2分泌之細胞激素MCP-1濃度有顯著提升,其中經由DEP排列後的實驗組MCP-1分泌量高於未排列的組別約30%。另一方面, LPS刺激HK-2後分泌之細胞激素會使部分THP-1細胞分化而貼附在晶片底面,且其形態也接近使用phorbol-12-myristate-13-acetate (PMA)單獨刺激而分化之巨噬細胞。


    Upper urinary tract infections (upper UTIs) can induce acute inflammation of human kidney, which can cause fever, vomiting or even kidney failure and death. Therefore, realizing the immune response of upper UTIs should be helpful for curing this kind of diseases efficiently. In this research, we developed a microfluidic chip model for mimicking the microenvironment of kidney by using MEMS technology. The goal of this research is to observe immune response between kidney and immune cells. The dielectrophoresis (DEP) was utilized in our microchip for building biomimetic pattern of kidney cells.
    Lipopolysaccharide (LPS) from Escherichia coli (E. coli) was used to stimulate renal tubular epithelial cells (HK-2). After being stimulated, the HK-2 started to secret some cytokine to influence the human acute monocyte leukemia cell line (THP-1). We observed whether THP-1 cells differentiated to macrophage or not.
    Experimental results show that the viability of HK-2 cells is still above 99% and the cells can proliferate for at least 3 days without any morphological change after DEP patterning. The concentration of MCP-1 increased after HK-2 cells were stimulated by 10ng/ml E. coli LPS. Furthermore, MCP-1 concentration secreted by the patterned HK-2 cells was about 30% higher than that from non-patterned HK-2 cells after 72 hours culturing. THP-1 cell adhesion was observed by culturing with LPS-induced HK-2 cytokine for 24 hours.

    Abstract I 摘要 II 致謝 III 圖目錄 VII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 1.3 研究背景 4 1.3.1 生醫微機電與實驗室晶片 4 1.3.2 腎臟 5 1.3.3 大腸桿菌與其感染 6 1.3.4 腎臟免疫系統 8 1.4 文獻回顧 9 1.4.1 腎臟仿生晶片 9 1.4.2 介電泳力應用於微流體系統之細胞排列技術 12 1.4.3 人類單核球細胞(THP-1) 15 第二章 系統理論與晶片設計 17 2.1 系統理論 17 2.1.1 微流體晶片設計理論 17 2.1.1.1 雷諾數 (Reynolds number) 17 2.1.1.2 特徵擴散長度 (characteristic diffusion length) 18 2.1.1.3 微流體流阻分析 19 2.1.2 介電泳理論 21 2.1.2.1 電泳(Electrophoresis) 21 2.1.2.2 介電泳(Dielectrophoresis) 21 2.2 微流體晶片設計 25 2.2.1 微流體晶片設計概念 25 2.2.2 電極設計 26 2.2.3 晶片模擬 27 2.2.4 微流體晶片操作流程 29 第三章 微流道晶片製程 31 3.1 製作流程 31 3.1.1 微流道母模製程 31 3.1.2 電極製程 33 3.1.3 系統晶片製程 35 3.2製程結果 36 第四章 實驗材料與方法 38 4.1 實驗材料 38 4.1.1 腎小管上皮細胞(Human renal proximal tubular cell line, HK-2)培養 38 4.1.2 人類單核球細胞(Human acute monocyte leukemia cell line, THP-1)培養 39 4.1.3 膠原蛋白 39 4.1.4 介電泳緩衝液(DEP Buffer) 40 4.1.5 晶片前處理 40 4.1.6 細胞螢光染劑 41 4.2 實驗架設 41 4.2.1 儀器架設 41 4.2.2 酵素結合免疫分析法(ELISA) 42 第五章 實驗結果 44 5.1 流場測試 44 5.2 結構測試 45 5.3 HK-2細胞排列與死活率檢測 46 5.4 HK-2細胞型態比較 48 5.5 HK-2細胞激素分析 48 5.6 THP-1細胞沖洗流速測試 50 5.7 PMA刺激THP-1細胞 51 5.8 THP-1細胞型態及貼附率比較 53 第六章 討論 56 第七章 結論與未來展望 58 第八章 參考文獻 59

    [1] USRDS, "Incidence of ESRD," 2013.
    https://www.usrds.org/atlas13.aspx
    [2] L. M. Dembry and V. T. Andriole, "Renal and perirenal abscesses," Infect Dis Clin North Am, vol. 11, pp. 663-80, Sep 1997.
    [3] https://commons.wikimedia.org/wiki/File:Blausen_0593_KidneyAnatomy_02.png
    license notice: BruceBlaus https://creativecommons.org/licenses/by/3.0/legalcode
    [4] https://commons.wikimedia.org/wiki/File:EscherichiaColi_NIAID.jpg
    [5] http://chronicsorethroats.blogspot.tw/2011/06/kidney-infections.html
    [6] V. R. Gogulamudi, M. L. Dubey, D. Kaul, V. S. Atluri, and R. Sehgal, "Downregulation of host tryptophan-aspartate containing coat (TACO) gene restricts the entry and survival of Leishmania donovani in human macrophage model," Front Microbiol, vol. 6, p. 946, 2015.
    [7] S. C. Slater, V. Beachley, T. Hayes, D. Zhang, G. I. Welsh, M. A. Saleem, et al., "An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane," PLoS One, vol. 6, p. e20802, 2011.
    [8] K. J. Jang, A. P. Mehr, G. A. Hamilton, L. A. McPartlin, S. Chung, K. Y. Suh, et al., "Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment," Integr Biol (Camb), vol. 5, pp. 1119-29, Sep 2013.
    [9] M. B. Byrne, L. Trump, A. V. Desai, L. B. Schook, H. R. Gaskins, and P. J. A. Kenis, "Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling," Biomicrofluidics, vol. 8, Jul 2014
    [10] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, pp. 627-35, 2007.
    [11] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, K. H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, pp. 10910-2, 2007.
    [12] K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, "Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices," Applied Physics Letters, vol. 88, Jan 9 2006.
    [13] X. Y. Hu, P. H. Bessette, J. R. Qian, C. D. Meinhart, P. S. Daugherty, and H. T. Soh, "Marker-specific sorting of rare cells using dielectrophoresis," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15757-15761, Nov 1 2005.
    [14] G. Mernier, N. Piacentini, T. Braschler, N. Demierre, and P. Renaud, "Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting," Lab on a Chip, vol. 10, pp. 2077-2082, 2010.
    [15] B. M. Taff and J. Voldman, "A scalable addressable positive-dielectrophoretic cell-sorting array," Anal Chem, vol. 77, pp. 7976-83, Dec 15 2005.
    [16] N. Demierre, T. Braschler, R. Muller, and P. Renaud, "Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis," Sensors and Actuators B-Chemical, vol. 132, pp. 388-396, Jun 16 2008.
    [17] E. M. Nascimento, N. Nogueira, T. Silva, T. Braschler, N. Demierre, P. Renaud, et al., "Dielectrophoretic sorting on a microfabricated flow cytometer: Label free separation of Babesia bovis infected erythrocytes," Bioelectrochemistry, vol. 73, pp. 123-128, Aug 2008.
    [18] M. S. Marcus, L. Shang, B. Li, J. A. Streifer, J. D. Beck, E. Perkins, et al., "Dielectrophoretic manipulation and real-time electrical detection of single-nanowire bridges in aqueous saline solutions," Small, vol. 3, pp. 1610-1617, Sep 2007.
    [19] L. F. Zheng, J. P. Brody, and P. J. Burke, "Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly," Biosensors & Bioelectronics, vol. 20, pp. 606-619, Oct 15 2004.
    [20] Z. Chen, Z. Y. Wu, L. M. Tong, H. P. Pan, and Z. F. Liu, "Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties," Analytical Chemistry, vol. 78, pp. 8069-8075, Dec 1 2006.
    [21] X. M. Liu, J. L. Spencer, A. B. Kaiser, and W. M. Arnold, "Selective purification of multiwalled carbon nanotubes by dielectrophoresis within a large array," Current Applied Physics, vol. 6, pp. 427-431, Jun 2006.
    [22] C. C. Chung, I. F. Cheng, H. M. Chen, H. C. Kan, W. H. Yang, and H. C. Chang, "Screening of Antibiotic Susceptibility to beta-Lactam-Induced Elongation of Gram-Negative Bacteria Based on Dielectrophoresis," Analytical Chemistry, vol. 84, pp. 3347-3354, Apr 3 2012.
    [23] L. C. Hsiung, C. L. Chiang, C. H. Wang, Y. H. Huang, C. T. Kuo, J. Y. Cheng, et al., "Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments," Lab on a Chip, vol. 11, pp. 2333-2342, 2011.
    [24] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, pp. 3251-3256, 1997.
    [25] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, pp. 1146-53, Sep 2007.
    [26] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab on a Chip, vol. 6, pp. 724-34, Jun 2006.
    [27] C. T. Ho, R. Z. Lin, R. J. Chen, C. K. Chin, S. E. Gong, H. Y. Chang, et al., "Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue," Lab on a Chip, vol. 13, pp. 3578-87, Sep 21 2013.
    [28] J. Ramon-Azcon, S. Ahadian, R. Obregon, G. Camci-Unal, S. Ostrovidov, V. Hosseini, et al., "Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells," Lab on a Chip, vol. 12, pp. 2959-2969, 2012.
    [29] S. Bastiaan-Net, W. Chanput, A. Hertz, R. D. Zwittink, J. J. Mes, and H. J. Wichers, "Biochemical and functional characterization of recombinant fungal immunomodulatory proteins (rFIPs)," International Immunopharmacology, vol. 15, pp. 167-175, Jan 2013.
    [30] M. Daigneault, J. A. Preston, H. M. Marriott, M. K. B. Whyte, and D. H. Dockrell, "The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages," Plos One, vol. 5, Jan 13 2010.
    [31] E. K. Park, H. S. Jung, H. I. Yang, M. C. Yoo, C. Kim, and K. S. Kim, "Optimized THP-1 differentiation is required for the detection of responses to weak stimuli," Inflammation Research, vol. 56, pp. 45-50, Jan 2007.
    [32] W. Chanput, J. J. Mes, and H. J. Wichers, "THP-1 cell line: An in vitro cell model for immune modulation approach," International Immunopharmacology, vol. 23, pp. 37-45, Nov 2014.
    [33] M. Genin, F. Clement, A. Fattaccioli, M. Raes, and C. Michiels, "M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide," Bmc Cancer, vol. 15, Aug 8 2015.
    [34] W. Chanput, J. J. Mes, H. F. J. Savelkoul, and H. J. Wichers, "Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds," Food & Function, vol. 4, pp. 266-276, Feb 2013.
    [35] M. Raasch, K. Rennert, T. Jahn, S. Peters, T. Henkel, O. Huber, et al., "Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions," Biofabrication, vol. 7, Mar 2015
    [36] P. Nallasamy, H. W. Si, P. V. A. Babu, D. K. Pan, Y. Fu, E. A. S. Brooke, et al., "Sulforaphane reduces vascular inflammation in mice and prevents TNF-alpha-induced monocyte adhesion to primary endothelial cells through interfering with the NF-kappa B pathway," Journal of Nutritional Biochemistry, vol. 25, pp. 824-833, Aug 2014.
    [37] O. F. Khan and M. V. Sefton, "Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct," Biomedical Microdevices, vol. 13, pp. 69-87, Feb 2011.
    [38] G. Mazza, M. Stoiber, D. Pfeiffer, and H. Schima, "Atraumatic Pulsatile Leukocyte Circulation for Long-Term In Vitro Dynamic Culture and Adhesion Assays," Artificial Organs, vol. 39, pp. 973-978, Nov 2015.
    [39] S. Srigunapalan, C. Lam, A. R. Wheeler, and C. A. Simmons, "A microfluidic membrane device to mimic critical components of the vascular microenvironment," Biomicrofluidics, vol. 5, p. 13409, Mar 30 2011.

    QR CODE