研究生: |
張庭瑜 Chang, Ting Yu |
---|---|
論文名稱: |
利用心率變異度進行充血性心臟衰竭之短時間與長時間分析 A Short- and Long-Term Analysis of Congestive Heart Failure Based on Heart Rate Variability |
指導教授: |
馬席彬
Ma, Hsi Pin |
口試委員: |
蔡佩芸
Tsai, Pei Yun 楊家驤 Yang, Chia Hsiang 黃元豪 Huang, Yuan Hao 林澂 Lin, Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 充血性心臟衰竭 、心律變異度 |
外文關鍵詞: | CHF, HRV |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出了一個基於心率變異性的充血性心臟衰竭辨識系統。其中,我們著重於短時間與長時間的分析與探討,因此在長時間分析的部分我們所使用的資料長度為四小時;而短時間分析使用的資料長度為五分鐘。所有的心電圖紀錄都是來自於國立台灣大學醫學院的二十四小時臨床實驗。
我們的辨識系統主要可以分成三個部分:特徵擷取、特徵選取、以及分類。為了萃取出適當的特徵,我們使用了不只是基本的線性特徵,還有一些非線性的方法像是多尺度熵分析、去趨勢波動分析,皆運用於我們的論文當中。為了更進一步地找出特徵與疾病間的關聯,我們使用了統計方法來驗證每一個特徵在充血性心臟衰竭與對照組間是否有顯著差異。接著在排除一些對於辨識沒有充分有效的特徵後,我們使用了前饋式特徵選取方法分別為短期與長期的分析選擇出最佳的特徵組合。最後會運用支持向量機的原理來尋找最好的支持超平面,獨立出一個模糊區塊,並將其設為第三類別再進一步做分類辨識。
在我們的論文中也討論了短期與長期分析的比較,另外根據留一法(leave-one-out method)來驗證此辨識系統的效能。最後得到長時間分析的辨識率高達100%,而短時間分析的正確率為95.83%。
In this thesis, a recognition system of congestive heart failure (CHF) based on heart rate variability is proposed. Therein, we attach great importance to the discussion of short- and long-term analysis. For the long-term analysis, we accessed 4-hour data; for the short-term analysis, we retrieved 5-minute data. Furthermore, all the ECG data is derived from the 24-hour recording of the clinical trial in National Taiwan University Hospital.
This system is primarily divided into three parts: feature extraction, feature selection, and classification. To extract appropriate features, not only the basic linear features but also the non-linear methods such as the multiscale entropy, and detrended fluctuation analysis, are applied in our research. To further find out the correlation between the feature and disease, we employed the statistical method to verify whether there is a significant difference of features between CHF and Control or not. After excluding the features that are not sufficiently effective, we chose the sequential forward selection (SFS) to search for the best feature set for the short- and long-term analysis respectively. Afterwards, the support vector machine (SVM) is used to look for the best support hyperplanes to hive off the unclear group and then classify with the three groups.
The comparisons of short- and long-term analysis are also discussed in this thesis. According to the leave-one-out method, we verified the performance of this recognition system. Finally, the recognition accuracy for long-term analysis is up to 100% and for short-term analysis attained 95.83%.
[1] “Cardiovascular diseases (CVDs),” Jun. 2016. [Online]. Available: http://www.who.int/
mediacentre/factsheets/fs317/en/.
[2] “Cardiovascular disease risk factors,” 2011. [Online]. Available: http://www.
world-heart-federation.org/press/fact-sheets/cardiovascular-disease-risk-factors/.
[3] “Rise Above Heart Failure,” 2016. [Online]. Available: http://www.heart.org/
HEARTORG/Conditions/HeartFailure/Heart-Failure UCM 002019 SubHomePage.jsp.
[4] M.-Y. Lee and S.-N. Yu, “Selection of heart rate variability features for congestive
heart failure recognition using support vector machine-based criteria,” in 5th European
Conference of the International Federation for Medical and Biological Engineering.
Springer, 2011, pp. 400–403.
[5] L. Pecchia, P. Melillo, M. Sansone, and M. Bracale, “Discrimination power of short-term
heart rate variability measures for chf assessment,” IEEE Transactions on Information
Technology in Biomedicine, vol. 15, no. 1, pp. 40–46, 2011.
[6] G. Liu, L. Wang, Q. Wang, G. Zhou, Y. Wang, and Q. Jiang, “A new approach to de-
tect congestive heart failure using short-term heart rate variability measures,” PloS one,
vol. 9, no. 4, p. e93399, 2014.
[7] K. H. Yoon, T. Thap, C. W. Jeong, N. H. Kim, S. Noh, Y. Nam, and J. Lee, “Analysis
of statistical methods for automatic detection of congestive heart failure and atrial fib-
rillation with short rr interval time series,” in Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2015 9th International Conference on. IEEE, 2015, pp.
452–457.
[8] J. E. Hall, Guyton and Hall textbook of medical physiology. Elsevier Health Sciences,
2015.
[9] “Heart,” Jun. 2012. [Online]. Available: http://completesoccertraining.blogspot.tw/
2012/06/heart.html.
[10] “Electrocardiography,” Aug. 2016. [Online]. Available: https://en.wikipedia.org/wiki/
Electrocardiography.
[11] J. P. Wallace, “Electrocardiography laboratory,” Oct. 2013. [Online]. Available:
http://www.indiana.edu/∼p409/labecg.html.
[12] M. Frank G. Yanowitz, “Ecg learning center,” 2016. [Online]. Available: http:
//ecg.utah.edu/.
[13] J. W. Hurst, “Naming of the waves in the ecg, with a brief account of their genesis,”
Circulation, vol. 98, no. 18, pp. 1937–1942, 1998.
[14] E. Burns, “Ecg library: Comprehensive, free educational resource covering over 100
ecg topics relevant to emergency medicine and critical care,” 2010. [Online]. Available:
http://lifeinthefastlane.com/ecg-library/.
[15] M. A. Gatzoulis, S. Balaji, S. A. Webber, S. C. Siu, J. S. Hokanson, C. Poile, M. Rosen-
thal, M. Nakazawa, J. H. Moller, P. C. Gillette et al., “Risk factors for arrhythmia and
sudden cardiac death late after repair of tetralogy of fallot: a multicentre study,” The
Lancet, vol. 356, no. 9234, pp. 975–981, 2000.
[16] D. Conen, M. Adam, F. Roche, J.-C. Barthelemy, D. F. Dietrich, M. Imboden,
N. K¨unzli, A. von Eckardstein, S. Regenass, T. Hornemann et al., “Premature atrial
contractions in the general population: frequency and risk factors,” Circulation, pp.
CIRCULATIONAHA–112, 2012.
[17] P. A. Van Der Wouw, A. C. Brauns, S. E. Bailey, J. E. Powers, and A. A. Wilde, “Prema-
ture ventricular contractions during triggered imaging with ultrasound contrast,” Journal
of the American Society of Echocardiography, vol. 13, no. 4, pp. 288–294, 2000.
[18] P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk
factor for stroke: the framingham study.” Stroke, vol. 22, no. 8, pp. 983–988, 1991.
[19] “Congestive heart failure,” Sep. 2016. [Online]. Available: http://www.md-health.com/
Congestive-Heart-Failure.html.
[20] “Wma declaration of helsinki - ethical principles for medical research involving human
subjects,” 2016. [Online]. Available: http://www.wma.net/en/30publications/10policies/
b3/.
[21] “Heart rate variability,” 2016. [Online]. Available: https://www.firstbeat.com/en/
science-and-physiology/heart-rate-variability/.
[22] “Heart rate variability,” Electrophysiology, Task Force of the European Society of
Cardiology the North American Society of Pacing, vol. 93, no. 5, pp. 1043–1065, 1996.
[Online]. Available: http://circ.ahajournals.org/content/93/5/1043
[23] “Analysis of heart rate variability,” 2009. [Online]. Available: http://www.tma.tw/ltk/
98520603.pdf.
[24] C. Shao, “One-dimension data analysis:mean, variance, standard deviation,” Mar. 2014.
[Online]. Available: http://www.lifelaf.com/blog/?p=765.
[25] G. E. Billman, “The lf/hf ratio does not accurately measure cardiac sympatho-vagal
balance,” Heart Rate Variability: Clinical Applications and Interaction between HRV
and Heart Rate, p. 54, 2007.
[26] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of biological
signals,” Physical review E, vol. 71, no. 2, p. 021906, 2005.
[27] S. M. Pincus, “Approximate entropy as a measure of system complexity.” Proceedings
of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.
[28] W. Chen, J. Zhuang, W. Yu, and Z. Wang, “Measuring complexity using fuzzyen, apen,
and sampen,” Medical Engineering & Physics, vol. 31, no. 1, pp. 61–68, 2009.
[29] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 82–87, 1995.
[30] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data analysis,
vol. 1, no. 3, pp. 131–156, 1997.
[31] N. Nachar, “The mann-whitney u: A test for assessing whether two independent samples
come from the same distribution,” Tutorials in Quantitative Methods for Psychology,
vol. 4, no. 1, pp. 13–20, 2008.
[32] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011, soft-
ware available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
[33] J. A. Swets et al., “Measuring the accuracy of diagnostic systems,” Science, vol. 240,
no. 4857, pp. 1285–1293, 1988.