研究生: |
許智祐 Hsu Jyh-Yuo |
---|---|
論文名稱: |
高能離子於物質內能量損失之量測分析與其應用研究 The study of the energy loss measurement of high energetic ions in matter and its application |
指導教授: |
梁正宏
Liang Jenq-Horng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 能量損失 、阻止能力 、能量損失岐離 、離子佈植 、蒙地卡羅方法 |
外文關鍵詞: | Energy loss, Stopping force, Energy loss straggling, In implantation, Monte Carlo method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文研究係以實驗量測的方式,探討帶有MeV能量的入射離子在物質內的能量損失情形,離子的種類分別為氦(3He/4He)、鋰(6Li/7Li)與硼(10B/11B)離子,靶材的種類則分別為單元素靶材(鋁、銀與金)和高分子薄膜(聚碳酸酯、聚對酞乙二酯、與聚硫亞胺)。本論文研究的實驗量測結果與 SRIM 2003 模擬程式的計算和其他相關研究的實驗結果相當一致,顯示本論文研究所使用的能量損失測量方式的適用性與精準性。此外,對於同位素離子的能量損失研究發現,在相同的入射離子速度下,同位素離子的電子阻止能力幾乎相同,即當入射離子能量小於具有最大阻止能力的離子能量時,較重的同位素離子具有較低的能量損失;而當入射能量大於此能量時,則會有相反的結果。對於能量損失岐離的量測,顯示其只在高能量區域時,才會趨近於理論模式的估算,在低能量區域會偏離於理論模式的計算。對於高分子薄膜的測量,證實在本論文研究的能量區間,布拉格規則可適用於入射離子於物質中阻止能力與能量損失岐離的加總之用。
此外,在本論文研究中,藉由理論模式所發展出的能量損失截面數據,再配合以 EGS4 程式作為基本架構,並針對離子遷移所具有的特性,加以修正程式的模擬計算過程,進而發展出一套適用於離子佈植的蒙地卡羅模擬程式,可準確地計算出佈植離子在靶材的分佈情形。而該程式最大的特點是,可將射源與靶材以近乎真實物品的二維或三維幾何形狀來模擬,應用能力十分寬廣。
Abstract
The purpose of this study is to measure the energy loss behavior of ions with MeV energies in matter. The ions of interest, including 3He/4He, 6Li/7Li, and 10B/11B, were investigated indepth. A partially-coated silicon detector (with aluminium, sliver, and gold thin film) and a self-supported compound foil detector (such as polycarbonate, polyethylene terephthalate, and polypropylene) were especially designed for the detection measurements. From this study, the measured stopping forces of those ions in matter were in good agreement with the evaluations yielded by SRIM 2003 and other findings. The results also demonstrated that the energy loss measurement could be successfully achieved with the use of a partially coated detector and a self-supported foil detector. The measured stopping forces of various isotopes with the same velocity were almost equal. It means that the heavier isotope has a small stopping force, when bombarding energies are below the electronic stopping maximum. A reverse shift occurs as the incident-ion energies are higher than the maximum. The results also revealed that the experimental energy loss stragglings approached the theoretical predictions at the higher energy region. In the lower energy region, the measured data had some deviations with the predictions. Further, the measurements for the polymer foils confirmed the validity of the use of Bragg’s rule for the stopping force and energy loss straggling in this energy region.
Furthermore, a modified Monte-Carlo simulation program based the EGS4 code together with energy loss and straggling data was successfully developed for the simulation of the ion implantation. The results showed that the calculations were in good agreement with the experimental data and the theoretical results yielded by SRIM 2003. The applicability of this code is that both the source and the target are flexible to be described as either a 2-dimensional or 3-dimensional shape
參考文獻
[1] E. Rutherford, Phil. Mag. 21 (1906) 669.
[2] W. Whaling, Handbuch der Physik 34, p.202, Springer, Berlin, 1958.
[3] H. H. Andersen, J. F. Ziegler, “Hydrogen Stopping Powers and Ranges in All Elements,” Pergamon Press, New York, 1977.
[4] J.F. Ziegler, “Helium Stopping Powers and Ranges in All Elements,” Pergamon Press, New York, 1978.
[5] J.F. Ziegler, J.P, Biersack, U. Littmark, “The Stopping and Range of Ions in Solids,” Pergamon Press, New York, 1985.
[6] International Commission on Radiation Units and Measurements, ICRU Report 49, Bethesda, MD, Issued : 15, 1933.
[7] N. Bohr, Phil. Mag. 25 (1913) 10.
[8] N. Bohr, Fys. Medd. Dan. Vid. Selsk. 18 (1948) 8.
[9] H.A. Bethe, Ann. Phys. 5 (1930) 325.
[10] H.A. Bethe, Z. Phys. 76 (1932) 293.
[11] H.A. Bethe, Phys. Rev. 89 (1953) 1256.
[12] J. Lindhard, Fys. Medd. Dan. Vid. Selsk. 28 (1954) 8.
[13] J. Lindhard, M. Scharff, Phys. Rev. 124 (1961) 128.
[14] J. Lindhard, M. Scharff, H.E. Schiøtt, Fys. Medd. Dan. Vid. Selsk. 33 (1963) 14.
[15] J. Lindhard, Fys. Medd. Dan. Vid. Selsk. 34 (1954) 4.
[16] O.B. Firsov, Zh. Eksp. Teor. Fiz. 32 (1957) 1464.
[17] O.B. Firsov, Zh. Eksp. Teor. Fiz. 33 (1959) 1517.
[18] A. Crispin, G.N. Fowler, Rev. Mod. Phys. 42 (1970) 290.
[19] F. Bloch, Ann. Phys. 16 (1933) 285.
[20] F. Bloch, Z. Phys. 81 (1933) 363.
[21] W.K. Chu, D. Powers, Phys. Lett. A 38 (1972) 267.
[22] W.K. Chu, D. Powers, Phys. Lett. A 40 (1972) 23.
[22] H.D. Betz, Rev. Mod. Phys. 44 (1972) 465.
[23] D.K. Brice, Phys. Rev. A6 (1972) 1971.
[24] F. Herman, S. Skillmann, “Atomic Structure Calculation,” Prentice-Hall, Inc., 1963.
[25] L.H. Thomas, Proc. Camb. Phil. Soc. 23 (1926) 542.
[26] E. Fermi, Z. f. Physik 48 (1928) 73.
[27] A. Sommerfeld, Z. f. Physik 78 (1932) 283.
[28] G. Moliere, Z. f. Naturforsch A 2 (1947) 133.
[29] W. Lenz, Z. f. Physik 77 (1932) 713.
[30] H. Jensen, Z. f. Physik 77 (1932) 722.
[31] N. Bohr, Phys. Rev. 58 (1940) 654.
[32] N. Bohr, Phys. Rev. 59 (1941) 270.
[33] O.B. Firsov, Zh. Eksp. Teor. Fiz. 34 (1958) 447.
[34] O.B. Firsov, JETP 7 (1958) 308.
[35] J.H. Liang, G.L. Kulcinski, J. Nucl. Mat. 183 (1991) 202.
[36] J.P. Biersack, W. Eckstein, Appl. Phys. A 34 (1984) 73.
[37] J.H. Liang and K.Y. Liao, Proc. 9th Int. Conf. on Ion Beam Modification on Materials, Canberra, Australia, 1995.
[38] J.D. Jackson, “Classical Electrodynamics,” John Wiley Inc., New York, 1998.
[39] C. Moellor, Ann. Phys. 14 (1932) 531.
[40] L.D. Landau, E.M. Lifshitz, "Electrodynamics of Continuous Media,” translated from the Russian by J.D. Sykes and J.S. Bell, Pergamon Press, New York, 1960.
[41] J. Lindhard, V. Nielsen, M. Scharff, K. Dan. Vidensk. Selsk., Mat. Fys. Medd. 28 (1954) 9.
[42] J. Lindhard, K. Dan. Vidensk. Selsk., Mat. Fys. Medd. 34 (1965) 14.
[43] O.B. Firsov, JETP 5 (1957) 1192.
[44] O.B. Firsov, JETP 6 (1958) 534.
[45] O.B. Firsov, JETP 9 (1959) 1076.
[46] J.F. Ziegler, TRIM-90, version 90.0, IBM, New York, 1990.
[47] J.F. Ziegler, J.P. Biersack, “SRIM: The Stopping and Range of Ions in Matter,” Version 96.07 (IBM-Research, Yorktown, 1996).
[48] D.K. Brice, “Ion Implantation Range and Energy Deposition Codes COREL, RASE4, and DAMG2,” SAND75-0622, Sandia Laboratories, Albuquerque, N.M., U.S.A. ,1975.
[49] J.P. Biersack, Z. Phys. A (Atoms and Nuclei) 305 (1982) 95.
[50] W.R. Nelson, H. Hirayama, D.W.O. Rogers, “The EGS4 Code System,” SLAC-265, Standford Linear Accelerator Center, Standford, California.
[51] J.F. Ziegler, SRIM 2003.17., http://www.srim.org/, 2003.
[52] P. Mertens, T. Krist, Nucl. Instr. and Meth. 168 (1980) 33.
[53] J.S.-Y Feng, J. Appl. Phys. 46 (1975) 444.
[54] H. Nakata, Can. J. Phys. 47 (1969) 2545.
[55] D.C. Santry, R.D. Werner, Nucl. Instr. and Meth. B5 (1984) 449.
[56] H.H. Lin, L.W. Li, E. Norbeck, Nucl. Instr. and Meth. B17 (1984) 91.
[57] J. Liu, Z. Zhen, W.K. Chu, Nucl. Instr. and Meth. B118 (1996) 24.
[58] J.C. Eckardt, Phys.Rev. A18 (1978) 426.
[59] H.H. Andersen, J.F. Bak, H. Knudsen, B.R. Nielsen, Phys. Rev. A16 (1977) 1929.
[60] D.C. Santry, R.D. Werner, Nucl. Instr. and Meth. 185 (1981) 517.
[61] D. Semrad, C. Eppacher, R. Tober, Nucl. Instr. and Meth. B48 (1990) 79.
[62] T. Zheng, X. Lu, Z. Xia, D.Shen, Phys.Rev. B57 (1998) 10213.
[63] Y.A. Teplova, V.S. Nikolaev, I.S. Dmitriev, L.N. Fateeva, Sov. Phys. 15 (1962) 31.
[64] J.P. Stoquert, A. Abdesselam, H. Beaumevieille, Y. Boudouma, J. C.Oberlin, Nucl. Instr. and Meth. 194 (1982) 51.
[65] D. Ward, R.L. Graham, J.S. Geiger, Can. J. Phys. 50 (1972) 2302.
[66] J.R. Comfort, J.F. Decker, E.T. Lynk, M.O. Scully, A.R. Quinton, Phys. Rev. 150 (1966) 249.
[67] A. Kuronen, J. Räisänen, J. Keinonen, P.Tikkanen, E. Rauhala, Nucl. Instr. and Meth. B35 (1988) 1.
[68] Y. Ohmura, K. Koike, Appl. Phys. Lett. 26 (1975) 221.
[69] H. Ryssel, H. Kranz, K. Müller, R.A. Henkelmann, J.P. Biersack, Appl. Phys. Lett. 30 (1977) 399.
[70] B.G. Svensson, J.T. Linnros, G. Holmén, J. Appl. Phys. 68 (1990) 73.
[71] B.G. Svensson, B. Mohadjeri, Nucl. Instr. and Meth. B55 (1991) 650.
[72] B.G. Svensson, M.C. Ridway, M. Petravic, J. Appl. Phys. 73 (1993) 4863.
[73] M. Vicanek, A. Gras-Marti, H. M. Urbassek, Nucl. Instr. and Meth. B67 (1991) 423.
[74] N. Bohr, Phil. Mag. 30 (1913) 581.
[75] J. Lindhard, M. Scharff, K. Dan. Vidensk. Mat. Fys. 27 (1953) 2057.
[76] E. Bonderup, P. Hvelplund, Phys. Rev. A4 (1971) 562.
[77] P. Sigmund, Phys. Rev. A14 (1976) 169.
[78] W.K. Chu, in: “Ion Beam Handbook for Material Analysis,” eds. J.W. Mayer and E. Rimini, Academic Press, New York, 1977.
[79] Q. Yang, D.J. O’Connor, Z. Wang, Nucl. Instr. and Meth. B61 (1991) 149.
[80] E. Friedland, J.M. Lombaard, Nucl. Instr. and Meth. 168 (1980) 25.
[81] J.P. Thomas, M. Fallavier, Nucl. Instr. and Meth. 149 (1978) 168.
[82] G.E. Hoffman, D. Powers, Phys. Rev. A13 (1976) 2042.
[83] F. Besenbacher, J.U. Andersen, E. Bonderup, Nucl. Instr. and Meth. 168 (1980) 1.
[84] J.M. Harris, M-A. Nicolet, Phys. Rev. B11 (1975) 1013.
[85] W.H. Bragg, R. Kleeman, Phil. Mag. 10 (1905) 318.
[86] D. I. Thwaites, Nucl. Instr. and Meth. B12 (1985) 84.
[87] D. I. Thwaites, Nucl. Instr. and Meth. B27 (1987) 293.
[88] W. Pietsch, U. Hauser, W. Newwirth, Nucl. Instr. and Meth. 132 (1976) 79.
[89] J.F. Ziegler, B.L.Crowder, G.W. Cole, J.E.E. Baglin, B.J. Master, Appl. Phys. Lett. 21 (1972) 16.
[90] F. Jahnel, H, Ryssel, G, Prinke, K. Hoffmann, K. Müller, J. Biersack, R. Henkelmann, Nucl. Instr. and Meth. 182/183 (1981) 223.
[91] W.K. Hofker, D.P. Oosthoek, N.J. Koeman, A.M. de Grefte., Rad. Eff. 24 (1975) 223.
[92] M. Behar, P.F.P. Finchtner, C.A. Olivier, J.P. de Souza, F.C. Zawislak, J.P. Biersack, F. Fink, M. Städele, Rad. Eff. 90 (1985) 103.
[93] D.C. Santry, R.D. Werner, O.M. Westcoot, IEEE Trans. Nucl. Sci. NS-26 (1979) 1331.
[94] J.H. Liang, Nucl. Sci. J. 34 (1997) 350.
[95] K.M. Wang, B.R. Shi, Appl. Phys. 23 (1990) 1282.