簡易檢索 / 詳目顯示

研究生: 王羽廷
Wang, Yu-Ting
論文名稱: CMOS 製程相容之阻可見光紫外光光電晶體
CMOS Process Compatible Visible-blind Ultraviolet Phototransistors
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 洪毓玨
王立康
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 紫外光光偵測器光電晶體阻可見光濾波器紫外光CMOS製程
外文關鍵詞: Ultraviolet Photodetectors, Phototransistors, Visible-blind Filter, CMOS Process Compatible
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網及智慧型設備快速發展,人們對於光感測器的品質及需求增加。其中可見光感測技術已發展得非常成熟,主要以矽為感光材料。而可見光波長外的光偵測器,例如紫外光及紅外光影像感測器,通常需要引入其他材料基板,使得製作成本較高。因此,若能開發利用標準CMOS製程來製作、以矽為主的紫外光光偵測器,能與IC電路整合,大幅降低生產成本。
    本論文提出將Al-SiO2-Al金屬-介電質-金屬結構的紫外光Fabry - Pérot濾波器與指叉式結構之橫向雙極性光電晶體 ( Interdigitated Lateral Bipolar Phototransistors ) 結合的設計與製程方式,藉以實現阻可見光紫外光濾波功能並有內建電流增益放大的光偵測器。我們成功抑制了可見光的穿透,並在紫外光波長350nm處,有最高的光響應,其光響應度為9.78E-2 (A/W)。


    With the rapid development of the IoT (Internet of Things) and smart devices, People pay more attention to and demand more need for high quality optical sensors. In recent years, tremendous progress has been reported with silicon based devices in visible range. For nonvisible range, such as in ultraviolet and Infrared region, wide bandgap material and III-V semiconductors are usually adopted, which is expensive and incompatible. Therefore, we can develop a silicon-based ultraviolet photodetector using a standard CMOS process. It can be easily integrated with the IC circuit and significantly reduce production costs.
    In this thesis, we propose a new design and fabrication method of Al-SiO2-Al (metal-dielectric-metal structure) visible-blind ultraviolet Fabry-Pérot bandpass filter, integrated with the current gain increment interdigitated lateral bipolar phototransistors. We successfully demonstrate suppression of visible light with the highest responsivity 9.78E-2 (A/W) at wavelength of 350 nm.

    Contents 摘要 I Abstract II 致謝 III Contents IV List of figures VI List of Table VIII 1 緒論 1 1.1 前言. . . . .1 1.2 研究動機. . . . .3 1.3 文章架構. . . . .4 2 理論背景 5 2.1 UV 光在矽材料的吸收. . . . .5 2.2 光偵測器. . . . .8 2.2.1 光偵測器與基本原理. . . . .8 2.2.2 光偵測器特性參數. . . . .9 2.2.3 p-i-n 光偵測器. . . . .13 2.2.4 光電晶體工作原理. . . . .15 2.3 紫外光帶通濾波器. . . . .18 2.3.1 Fabry–Pérot Filter. . . . .18 3 元件模擬及設計 21 3.1 元件暗電流特性模擬. . . . .21 3.1.1 p-i-n 光偵測器. . . . .22 3.1.2 橫向雙極光電晶體. . . . .25 3.2 紫外光帶通濾波器FDTD 光學模擬. . . . .31 3.3 元件設計. . . . .38 4 元件製作流程 39 4.1 元件製作流程圖與流程說明. . . . .39 4.1.1 指叉式電晶體製作. . . . .39 4.1.2 光學濾波結構製作. . . . .45 5 量測結果與分析 48 5.1 元件成品. . . . .48 5.2 元件光暗電流量測與分析. . . . .50 5.2.1 實驗儀器架設. . . . .50 5.2.2 元件暗電流量測分析. . . . .53 5.2.3 元件光電流量測分析. . . . .58 5.2.4 光轉電響應頻譜量測分析. . . . .60 5.3 紫外光帶通濾波器光頻譜量測分析. . . . .61 6 結論與未來展望 66 6.1 結論. . . . .66 6.2 改善. . . . .67 6.3 未來展望. . . . .67 參考文獻 68 A. Runcard & Recipes 71

    [1] Paul R. Norton, “Infrared Image Sensors,”Optical Engineering Vol. 30, No. 11, 1649 (1991).
    [2] G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-Performance p-i-n Ge on Si Photodetectors for the Near Infrared: From Model to Demonstration,”IEEE Transactions On Electron Devices Vol. 48, No. 6, 1092 (2001).
    [3] E Monroy et al,“Wide-bandgap Semiconductor Ultraviolet Photodetectors,” Semicond. Sci. Technol. 18 (2003) R33–R51.
    [4] Thorlabs PDA10A(-EC)Si Amplified Fixed Gain Detector User Guide (2017)
    [5] H. OUCHI, T. MUKAI, T. KAMEI, AND M. OKAMURA, “Silicon p-n Junction Photodiodes Sensitive to Ultraviolet Radiation,” IEEE Transactions On Electron Devices, Vol. ED-26, No. 12, 1965-1969 (1979)
    [6] A. Ghazi, H. Zimmermann, and P. Seegebrecht, “CMOS Photodiode With Enhanced Responsivity for the UV/Blue Spectral Range,”IEEE Transactions On Electron Devices Vol. 49, No. 7,1124 (2002).
    [7] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices (Third Edition, WILEY-INTERSCIENCE, 2007)
    [8] Cyril Pernot et al, “Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes,”Jpn. J. Appl. Phys. 39 L387 (2000)
    [9] S. M. Sze and M. K. Lee Semiconductor Devices Physics and Technology (Third Edition, John Wiley & Sons Inc, 2012)
    [10] J. M. Liu, Photonic Devices (Reissue edition, Cambridge University Press, 2009)
    [11] R. S. Popovic, K. Solt, U. Falk, and Z. Stoessel,“A Silicon Ultraviolet Detector,”Semors and Actuators,A21 A23, 553–558 (1990)
    [12] Y. Huang, and R. I. Hornsey “Current-Mode CMOS Image Sensor Using Lateral Bipolar Phototransistors,”IEEE Transactions On Electron Devices, Vol. 50, No. 12, 2570-2573 (2003)
    [13] H. A. Macleod, Thin Film Optical Filters (Taylor & Francis, 2001.)
    [14] C.-C. Lee, S.-H. Chen, C.-C. Kuo, and C.-Y. Wei “Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter,”Opt. Expr. 15, 15228 (2007).
    [15] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (2nd Edition, Wiley-Interscience, 2007)
    [16] W.-D. Li and S. Y. Chou,“Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,”Opt. Express 18, 931–937 (2010)
    [17] S. Kim, M. Man, M. Qi, and K. J. Webb,“Angle-insensitive and solarblind ultraviolet bandpass filter,”Opt. Lett. 39, 5784–5787 (2014)
    [18] H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,”Appl. Phys. Lett. 84, 4421 (2004).
    [19] R. W. Sandage and J. A. Connelly “A Fingerprint Opto-Detector Using Lateral Bipolar Phototransistors in a Standard CMOS Process,” IEEE, IEDM 95, 171–174 (1995)
    [20] W. Zhang, M. Chan, S. K. H. Fung, and P. K. Ko,“Performance of a CMOS Compatible Lateral Bipolar Photodetector on SOI Substrate,” IEEE Elec. Device Lett. 19, 435 (1998)
    [21] ERIC A. VITTOZ,“MOS Transistors Operated in the Lateral Bipolar Mode and Their Application in CMOS Technology,”IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-18, NO. 3, 273 (1983).
    [22] H. Shin and S. Fan, & “All-Angle Negative Refraction for Surface PlasmonWaves Using a Metal-Dielectric-Metal Structure,”Phys. Review Lett. 96, 073907 (2006)
    [23] J. T. Clarke, W. R. Skinner, M. B. Vincent, T. Irgang, V. Suratkal, H. Grassl, and J. T. Trauger, & “Laboratory studies of alkali metal filter deposition, ultraviolet transmission, and visible blocking,”Appl. Opt. 38(9), 1803–1813 (1999).
    [24] J.-L. Zhang, W.-D. Shen, P. Gu, Y.-G. Zhang, H.-T. Jiang, and X. Liu,“Omnidirectional narrow bandpass filter based on metal-dielectric thin films,”Appl. Opt. 47, 6285 (2008)
    [25] 吳宗庭, “矽材料分離式吸收-電荷-倍增之累增崩潰蕭特基光二極體應用於近紅外光偵測”, 清華大學光電所。(2016)
    [26] 謝佳倩, “具濾波功能之近外光鍺光偵測器”, 清華大學光電所。(2015)

    QR CODE