研究生: |
李明晉 LI, MING-CHIN |
---|---|
論文名稱: |
寬能隙P型有機射極之高效率混合型矽異質接面太陽能電池 Wide-Bandgap P-Type Organic Emitters for High Efficiency Hybrid Silicon Heterojunction Photovoltaics |
指導教授: |
洪勝富
Horng, Sheng-Fu 孟心飛 Meng, Hsin-Fei |
口試委員: |
洪勝富
Sheng-Fu Horng 孟心飛 Hsin-Fei Meng 余沛慈 Peichen Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 共溶劑製程 、提升開路電壓 、提升填充因子 、螢光高分子 、空間上梯度式摻雜透過垂直性的相分離 、複合層 |
外文關鍵詞: | co-solution method, enhanced Voc, enhanced FF, fluorescent polymers, spatially graded doping via vertical phase separation, recombination layer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽基太陽電池有著高效率、豐富來源等優點;而有機太陽電池可以利用低溫、低成本之溶液製程以及擁有捲對捲的拓展性之優勢,結合以上兩種系統的太陽電池,即是有機無機混成太陽電池。在無機的矽基板以及有機的共軛高分子材料基礎下,不但可以有效簡化製程手法,進而能大幅降低整個太陽電池的製程成本,但依舊可維持高效率之特點。
在本論文中,我們開發出一種利用共溶劑混藥方式,去配製具有強大拉電子能力的F4TCNQ摻雜於寬能帶的螢光高分子PFO中,此P型的有機層被旋塗在矽奈米線跟TAPC之介面,用以當做載子複合層且可拉低螢光高分子的費米能階,並且我們透過紫外光光電子能譜儀以及X-ray光電子能譜儀的量測,可以觀察到此P型的有機層中的F4TCNQ分布,是透過垂直性相分離的方式,呈現一種空間上梯度式摻雜,導致越靠近矽奈米柱處摻雜的F4TCNQ就越多,也就越呈現P型,此現象不但造成矽基板與P型有基層接面處的能帶彎曲,也使得電洞更容易因能障降低而傳遞到電極,因而提升開路電壓與填充因子,其元件轉換效率可達 13.6%。
Silicon solar cells have the advantages of high efficiency and abundant resources on earth.And organic solar cells can be fabricated in low temperature,low-cost solution processes and also has roll-to-roll scalability.Combining the advantages of these two material systems,hybrid solar cells based on organic conjugated polymers and inorganic silicon is a promising alternative to simplify the fabrication processes and reduce the cost,while maintaining a high PCE.
In this study,we introduce a co-solvent method to dope a wide band gap poly(9,9-dioctyfluorenyl-2,7-diyl) (PFO) fluorescent polymers with a very efficient electron acceptor tetrafluorotetracyanoquinodimethane(F4TCNQ).The p-doping layer was deposited onto and between 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane(TAPC)layer and SiNWs by the solution processing method in order to form a recombination layer and lower Fermi level of fluorescent polymers.
Furthermore,Ultraviolet Photoelectron spectroscopy (UPS) and X-ray Photoemission spectroscopy (XPS) confirms that F4TCNQ is spatially graded doping via vertical phase separation in this p-type doping layer.The nearer to SiNWs,the more F4TCNQ is doped, which let p-type layers become more p-type.
The power conversion efficiency reaches a record 13.6%, which is largely ascribed to the band bending between n-type silicon and p-doping layer interface.Consequently,holes can conduct to electrodes more easily by lowering energy barriers,which boost the open-circuit voltage and fill factor.
[1] (a)戴寶通、鄭晃忠,太陽能電池技術手冊.1 ed.; 台灣電子材料與元件協會: 2 008; p 500; (b)林明獻,太陽電池技術入門(第三版). 全華圖書: 台灣, 2012; (c)黃惠良,太陽電池.1 ed.; 五南圖書出版股份有限公司: 台灣, 2008.
[2]陳金鑫,黃孝文,―OLED夢幻顯示器–OLED材料與元件", 五南圖書.
[3] W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, A. P. Alivisatos, K. W.J.
[4] J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys.Lett, 1996, 68, 3120.
[5] Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R.Anderson, O. Inganäs, Phys. Rev. B, 2000, 61, 12957.
[6] T. J. Savenije, J. M. Warman, A.Goossens, Chem. Phys. Lett, 1998, 287, 148.
[7] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B, 1999, 59,15346
[8] Jaehyung Hwang and Antoine Kahn , Electrical doping of poly9,9-dioctylfluorenyl-2,7-diyl with tetrafluorotetracyanoquinodimethane by solution method . JOURNAL OF APPLIED PHYSICS 97, 103705 (2005)
[9] Keng-Hoong Yim, Gregory L. Whiting, Craig E. Murphy, Jonathan J. M. Halls,Jeremy H. Burroughes, Richard H. Friend, and Ji-Seon Kim, Controlling Electrical Properties of Conjugated Polymers via a Solution-Based p-Type Doping. Adv. Mater. 2008, 20, 3319–3324
[10] Yu et al, 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar
Cell via Interface Engineering. ACSNANO, VOL. 7 ,NO. 12 , 10780–10787 , 2013
[11] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett. 73, 729 (1998)
[12] M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Appl. Phys. Lett. 73, 3202 (1998)
[13] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, J. Appl. Phys. 87, 97 (2001)
[14] W. Gao and A. Kahn, Appl. Phys. Lett. 79, 4040 (2001)
[15] W. Gao and A. Kahn, J. Appl. Phys. 94, 359 (2003)
[16]A. M. Ballantyne, L. Chen, J. Nelson, D. D. C. Bradley, Y. Astuti, A.Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, I.McCulloch, Adv. Mater. 2007, 19, 4544.
[17] M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, E. P.Woo, Adv. Mater. 1999, 11, 241.
[18] L. L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H.Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[19]J. Hwang, A. Kahn, J. Appl. Phys. 2005, 97, 103705.